True, they are non-metal
And it's metal, not mental XD
Answer:
# In a familiar high-school chemistry demonstration, an instructor first uses electricity to split water into its constituent gases, Hydrogen and Oxygen. Then, by combining the two gases and igniting them with a spark, the instructor changes the gases back into water with a loud pop (That means the energy is released in the process).
# There are new other ways to produce water in laboratory, however, the scientists can not produce water in large quantity for the masses, because of some reasons.
1- Theoretically, this is possible, but it would be an extremely dangerous process. Since Hydrogen is extremely flammable and Oxygen supports combustion, it wouldn’t take much to create this force, but we also have an explosion. That’s why this process can be a deadly one if our experiment is big enough.
2- Personally, I think that it makes no sense to produce water in a laboratory ( or in a large plant) for people to use as daily water. The much more important thing we need to do is to save our environment, our planet Earth. Because the daily water people drink contains not just water molecules but other minerals, the marine life is depend not just in water molecules but diferent factors, etc.
Explanation:
This is just my personal opinion. Hope that can help you a little. Have a nice day
Answer:
E²⁺
Explanation:
The group two contain alkaline earth metals.
There are six elements in group 2A.
Beryllium, Magnesium, calcium, strontium, barium and radium.
All members have two valance electrons.
They lose two valance electrons to complete the octet.
When they lose the two valance electrons they form cation X²⁺.
They react with halogens and form salt such as
MgCl₂, CaCl₂ etc.
Mg²⁺ Cl²⁻₂
The oxidation state of halogens are -1, while the elements of group two A shows +2 that's why two atoms of halogen are combine with one atom of alkaline earth metals and make the compound overall neutral.
All the alkaline earth metals have similar properties.
Answer:
12.44 g
Explanation:
2C4H10 + 13O2 = 8CO2 + 10H2O
n(C4H10) = m(C4H10)/M(C4H10) = 4.1 / 58g/mol = 0.0707 mol (excess).
n(O2) = m(O2)/M(O2) = 25.9 / 32g/mol = 0.809 mol (deficiency).
Since the ratio of O2 to octane is 13 : 2 we can divide 0.0707 by 2 to get 0.03535 and divide 0.809 by 13 to get 0.062.
mass of CO2 produced =
M = [0.0707 moles C4H10 x 8 moles CO2] / 2 moles C4H10 x 44 g CO2/mol
M = 0.5656/2 * 44
M = 0.2828 * 44
M = 12.44 of CO2
Hey!!
here is your answer >>>
The answer for your question is the tension. We lift it up and the tension is exerted by the object downwards!.
Hope my answer helps!