In order to calculate the temperature, we need to know that temperature and pressure are directly proportional, that is, if the pressure increases, the temperature (in Kelvin) also increases in the same proportion.
So, first let's convert the temperature from Celsius to Kelvin, by adding 273 units:

Then, let's calculate the proportion:

Now, converting back to Celsius, we have:

So the temperature would be 166.5 °C.
There are several information's of immense importance already given in the question. Based on the given information's the answer to the question can easily be determined.
Distance covered by the bicycle = 5000 meter
Time taken by the bicycle to reach the distance = 500 second.
Velocity of the bicycle = Distance / Time taken
= 5000/500 meter/second
= 50 meter/second
So the velocity of the bicycle is 50 meter per second. I hope the procedure is clear enough for you to understand. In future you can always use this procedure for solving similar problems.
We can answer this problem using Ampere’s Law:
<span>Bh = μoNI </span>
Where:
B = Magnetic Field
h = coil length
<span>μo = permeability =4π*10^-7 T·m/A </span>
N = number of turns
I = current
It is given that B=0.0015T, I=1.0A, h=10 cm =
0.1m<span>
Use Ampere's law to find # turns:
Which can be rewritten as:
<span>N = Bh/μoI </span>
N = (0.0015)(0.1)/(4π*10^-7)(1.0)
N = 119.4
</span>
<span>Answer:
119.4 turns</span>
Acceleration = (change in speed) / (time for the change)
Change in speed = (end speed) - (start speed)
Change in speed = (26 m/s) - (12 m/s) = 14 m/s
Time for the change = 6 s
Acceleration = (14 m/s) / (6 s)
Acceleration = (14/6) (m/s²)
<em>Acceleration = 2.33 m/s²</em>