Achieve a full outer shell
Answer:
the acceleration required is 1.37m/s^2
Explanation:
The car is having a constant velocity movement, so if we calculate the time to reach 897m, we can use it to find the acceleration the policeman need to apply to reach the car.

the policeman is traveling with a constant acceleration starting from rest so:

Answer:
The answer is 10.857mJ
Explanation:
The energy stored in this solenoid is given by the below mentioned equation,

where L the inductance of this solenoid is given by the below mentioned equation,

Plugging this into the energy equation you obtain the equation for the total energy stored in the magnetic field of the solenoid, given by,

where
is the permeability of free space which equals to
. Plugging all the quantities into the above equation from the data in the question after converting to standard units. of meters instead of centimeters, we get for the energy stored in the coil,

Hi,
To convert 3 days to seconds write this.
1h = 3600s
24h = 3600 · 24 = 86400
3 days = 3 · 86400 = 259200sec
Hope this helps.
r3t40
Answer:
202.8m
Explanation:
Given that A pirate fires his cannon parallel to the water but 3.5 m above the water. The cannonball leaves the cannon with a velocity of 120 m/s. He misses his target and the cannonball splashes into the briny deep.
First calculate the total time travelled by using the second equation of motion
h = Ut + 1/2gt^2
Let assume that u = 0
And h = 3.5
Substitute all the parameters into the formula
3.5 = 1/2 × 9.8 × t^2
3.5 = 4.9t^2
t^2 = 3.5/4.9
t^2 = 0.7
t = 0.845s
To know how far the cannonball travel, let's use the equation
S = UT + 1/2at^2
But acceleration a = 0
T = 2t
T = 1.69s
S = 120 × 1.69
S = 202.834 m
Therefore, the distance travelled by the cannon ball is approximately 202.8m.