Answer: there were 12 chocolates in each box. (Originally, before any got eaten)
Step-by-step explanation: let x represent the total amount of chocolates in each box.
8x - 3(8) = 72
8x - 24 = 72 add 24 to both sides
8x = 96 divide both sides by 8
X = 12
Answer:
Rosaria purchased 50 bracelets and 70 necklaces
Step-by-step explanation:
Let the number of bracelets be b and the number of necklaces be n
b + n = 120 •••••(i)
Secondly;
10b + 11n = 1270 ••••(ii)
Total cost of b bracelets at 10 per 1 is 10b
Total cost of n bracelets at 11 per 1 is 11n
Adding both gives 1270
From i, b = 120-n
Substitute this into ii
10(120-n) + 11n = 1270
1200 - 10n + 11n = 1270
n = 1270-1200
n = 70
b = 120-n
b = 120-70
b = 50
<em>z</em> = 3<em>i</em> / (-1 - <em>i</em> )
<em>z</em> = 3<em>i</em> / (-1 - <em>i</em> ) × (-1 + <em>i</em> ) / (-1 + <em>i</em> )
<em>z</em> = (3<em>i</em> × (-1 + <em>i</em> )) / ((-1)² - <em>i</em> ²)
<em>z</em> = (-3<em>i</em> + 3<em>i</em> ²) / ((-1)² - <em>i</em> ²)
<em>z</em> = (-3 - 3<em>i </em>) / (1 - (-1))
<em>z</em> = (-3 - 3<em>i </em>) / 2
Note that this number lies in the third quadrant of the complex plane, where both Re(<em>z</em>) and Im(<em>z</em>) are negative. But arctan only returns angles between -<em>π</em>/2 and <em>π</em>/2. So we have
arg(<em>z</em>) = arctan((-3/2)/(-3/2)) - <em>π</em>
arg(<em>z</em>) = arctan(1) - <em>π</em>
arg(<em>z</em>) = <em>π</em>/4 - <em>π</em>
arg(<em>z</em>) = -3<em>π</em>/4
where I'm taking arg(<em>z</em>) to have a range of -<em>π</em> < arg(<em>z</em>) ≤ <em>π</em>.
Answer:
4 miles
Step-by-step explanation:
Answer:
apjoisdpojaspocjdsapodjopsapjdcpjsa
Step-by-step explanation: