Answer:
A. The partial pressure for CH4 = 0.0925atm
B. The partial pressure for C2H6 = 0.925atm
C. The partial pressure for C3H8 = 0.346atm
D. The partial pressure for C4H10 = 0.115atm
Explanation:
Total pressure = 1.48atm
Total mole = 0.4+4+1.5+0.5=6.4
A. Mole fraction of CH4 = 0.4/6.4 = 0.0625
The partial pressure for CH4 = 0.0625 x 1.48 = 0.0925atm
B. Mole fraction of C2H6 = 4/6.4 = 0.625
The partial pressure for C2H6 = 0.625 x 1.48 = 0.925atm
C. Mole fraction of C3H8 = 1.5/6.4 = 0.234
The partial pressure for C3H8 = 0.234 x 1.48 = 0.346atm
D. Mole fraction of C4H10 = 0.5/6.4 = 0.078
The partial pressure for C4H10 = 0.078 x 1.48 = 0.115atm
Answer:
Explanation:
Sn(WC)2
if it is tungsten carbide this should be correct but there are many versions of carbide
Sn(MC2)2
could also be possible
the 2 next to MC should be a subscript
Answer:
The monosaccharides, amino acids, bile salts, vitamins, and other nutrients are absorbed by the cells of the intestinal lining
Explanation:
Answer:
Atomic radius of sodium = 227 pm
Atomic radius of potassium = 280 pm
Explanation:
Atomic radii trend along group:
As we move down the group atomic radii increased with increase of atomic number. The addition of electron in next level cause the atomic radii to increased. The hold of nucleus on valance shell become weaker because of shielding of electrons thus size of atom increased.
Consider the example of sodium and potassium.
Sodium is present above the potassium with in same group i.e, group one.
The atomic number of sodium is 11 and potassium 19.
So potassium will have larger atomic radius as compared to sodium.
Atomic radius of sodium = 227 pm
Atomic radius of potassium = 280 pm