For each load, Work = (mass) x (gravity) x (distance .
Bigger load: Work = (10 kg) x (9.8 m/s²) x (2 m) = 196 joules .
Smaller load: Work = (5 kg) x (9.8 m/s²) x (4 m) = 196 joules.
The work required is equal in both cases.
The mass ratio of 2:1 is exactly balanced by
the height ratio of 1:2 .
Answer:
"Longitudinal wave" is the appropriate answer.
Explanation:
- Generating waves whenever the form of communication being displaced in a similar direction as well as in the reverse way of the wave's designated points, could be determined as Longitudinal waves.
- A wave running the length of something like a Slinky stuffed animal, which expands as well as reduces the spacing across spindles, produces a fine image or graphic.
Answer:
Explanation:
Given
Temperature of Room 
Area of Person 
Temperature of skin 
Heat transfer coefficient 
Emissivity of the skin and clothes 

Total rate of heat transfer=heat Transfer due to Radiation +heat transfer through convection
Heat transfer due radiation 
where 


Heat Transfer due to convection is given by




The best answer would be the 4th choice. "They help scientists explain concepts that are difficult to observe, this also covers the first answer which helps the scientist to answer complex questions. A scientific model is not used prove scientific laws as they may not always have all the data to prove so, instead it is used to allow them to explain better concepts revolving around science through research and may also allow them to predict results based on the accumulation of data and analyzing the trend of this resulting information.
Based on the calculation of the resultant of vector forces:
- the resultant force due to the quadriceps is 1795 N
- the resultant force due to the quadriceps is 1975 N. Training and strengthening the vastus medialis results in a greater force of muscle contraction.
<h3>What is the resultant force due to the quadriceps?</h3>
The resultant of more than two vector forces is given by:
where:
- Fₓ is the sum of the horizontal components of the forces
- Fₙ is the sum of the vertical components of the forces
- Fx = F₁cosθ + F₂cosθ + F₃cosθ + F₄cosθ
- Fₙ = F₁sinθ + F₂sinθ + F₃sinθ + F₄sinθ
- F₁ = 680N, θ = 90 = 30 = 120°
- F₂ = 220 N, θ = 90 + 16 = 106°
- F₃ = 600 N, θ = 90 + 15 = 105°
- F₄ = 480 N, θ = 90 - 35 = 55°
then:
Fx = 680 * cos 120 + 220 * cos 106 + 600 * cos 105 + 480 * cos 55
Fx = -280.6 N
Fₙ = 680 * sin 120 + 220 * sin 106 + 600 * sin 105 + 480 * sin 55
Fₙ = 1773.1 N
then:
F = √(-280.6)² + ( 1773.1)²
F = 1795.16 N
F ≈ 1795 N
Therefore, the resultant force due to the quadriceps is 1795 N
<h3>What would happen if the vastus medialis was trained and strengthened to contract with 720N of force?</h3>
From the new information provided:
- F₁ = 680N, θ = 90 = 30 = 120°
- F₂ = 220 N, θ = 90 + 16 = 106°
- F₃ = 600 N, θ = 90 + 15 = 105°
- F₄ = 720 N, θ = 90 - 35 = 55°
then:
Fx = 680 * cos 120 + 220 * cos 106 + 600 * cos 105 + 720 * cos 55
Fx = -142.95 N
Fₙ = 680 * sin 120 + 220 * sin 106 + 600 * sin 105 + 720 * sin 55
Fₙ = 1969.72 N
then:
F = √(-142.95)² + ( 1969.72)²
F = 1974.9 N
F ≈ 1975 N
Therefore, the resultant force due to the quadriceps is 1975 N.
Training and strengthening the vastus medialis results in a greater force of muscle contraction.
Learn more about resultant of forces at: brainly.com/question/25239010