The answer is 1000/20. Or that’s what I’m guessing. Lol
<h2>Answer: 12.24m/s</h2>
According to <u>kinematics</u> this situation is described as a uniformly accelerated rectilinear motion. This means the acceleration while the car is in motion is constant.
Now, among the equations related to this type of motion we have the following that relates the velocity with the acceleration and the distance traveled:
(1)
Where:
is the Final Velocity of the car. We are told "the car comes to a stop after travelling", this means it is 0.
is the Initial Velocity, the value we want to find
is the constant acceleration of the car (the negative sign means the car is decelerating)
is the distance traveled by the car
Now, let's substitute the known values in equation (1) and find
:
(2)
(3)
Multiplying by -1 on both sides of the equation:
(4)
(5)
Finally:
>>>This is the Initial velocity of the car
Answer:
98%
Explanation:
Given parameters
Mass of motor = 10kg
Height = 2m
Time = 2s
Power input = 100w
Unknown
Efficiency = ?
Solution
Efficiency is the percentage of the power output to the power input.
Power is the rate at which work is done.
Power output = mass x g x height / time
g is the acceleration due to gravity
Power output = 10x 2 x 9.8 / 2 = 98W
Efficiency = power output/ power input x 100
Efficiency = 98/100 x 100 = 98%
<span>This law means that when one object exerts force on another, the same amount of force is exerted on the initial object, but in the opposite reaction. For example, when a billiard ball strikes another ball, the second ball is propelled forward. Simultaneously, the momentum of the first ball is slowed or stopped by opposing force. The amount that the first object is affected by the opposing force depends on the mass and motion of the second object.</span>
Answer:
Yes, young rocks typically occur around volcanoes since they are closer to the crate, thus the magma is beginning to cool down to form rocks or it has recently cooled down.
Explanation: