The answer is static friction. This is the friction that involves objects that do not move.
It stays constant, because it's using that energy to change state
Answer:
v = 54.2 m / s
Explanation:
Let's use energy conservation for this problem.
Starting point Higher
Em₀ = U = m g h
Final point. Lower
= K = ½ m v²
Em₀ = Em_{f}
m g h = ½ m v²
v² = 2gh
v = √ 2gh
Let's calculate
v = √ (2 9.8 150)
v = 54.2 m / s
Answer:
The frog's horizontal velocity is 0.2 m/s.
Explanation:
To solve this problem, we must first remember what velocity is and how we solve for it. Velocity can be solved for using the formula x/t, where x represents horizontal distance and t represents time (in seconds), that it takes to travel this distance. If we plug in the given numbers for these variables and solve, we get the following:
v = x/t
v = 0.8m/4s
v = 0.2 m/s
Therefore, the correct answer is 0.2 m/s. We can verify that these units are correct because the formula calls for distance divided by time, so meters per second is a sensible answer.
Hope this helps!
The best transition between the four options presented to represent a time when water molecules are moving closer together would be A. Frost forms on a window pane.
The closest distance that the water molecules can do is when the water is in the state of being solid. It is known that the solid state of matter has the closest distance from molecule to molecule that when a molecule tries to move, the others move as well creating a vibration and thus producing heat in the process. When they are in a liquid state, they are quite far from each other. In a gas state, they really are far from each. This explains the difference in their characteristics.