Answer:
340.67 kgm²/s
Explanation:
R = Radius of merry-go-round = 1.9 m
I = Moment of inertia = 209 kgm²
= Initial angular velocity = 1.63 rad/s
m = Mass of person = 73 kg
v = Velocity = 4.8 m/s
Initial angular momentum is given by

The initial angular momentum of the merry-go-round is 340.67 kgm²/s
The object’s resultant angle of motion with the +x-axis after the collision is 47°
<span>From object A:
1) x-momentum is 5.7 × 10^4 kilogram meters/second,
2) y-momentum is 6.2 × 10^4 kilogram meters/second.
Now, we know, tan</span>Ф =

⇒tanФ =

⇒tanФ = 1.088
⇒ Ф =

1.088
= 47.4 ≈ 47
Answer:
471392.4 N
Explanation:
From the question,
Just before contact with the beam,
mgh = Fd.................... Equation 1
Where m = mass of the beam, g = acceleration due to gravity, h = height. F = average Force on the beam, d = distance.
make f the subject of the equation
F = mgh/d................ Equation 2
Given: m = 1900 kg, h = 4 m, d = 15.8 = 0.158 m
Constant: g = 9.8 m/s²
Substitute into equation 2
F = 1900(4)(9.8)/0.158
F = 471392.4 N
Answer: Acceleration is a measure of how fast velocity changes. Acceleration is the change of velocity divided by the change of time. Acceleration is a vector, and therefore includes both a size and a direction. In short, acceleration is the rate at which speed changes.
Gravity!! It also keeps the planets in orbit!