K.E =1/2mv2
M=6kg
V=3m/s
K.E=1/2 X 6 X 3 X 3
=1/2 X 6 X 9
=27 J
The motion of an electric<span> charge producing a magnetic field is an essential concept in understanding magnetism. The magnetic moment of an atom can be the result of the electron's spin, which is the </span>electron orbital motion<span> and a change in the </span>orbital<span>motion of the electrons caused by an </span>applied<span> magnetic field.</span>
Answer:
Solid-state
Explanation:
A solid-state device can be defined as a crystalline material that is typically made up of semiconductor and as such controls the number and rate of flow of charged carriers such as holes or electrons.
Some examples of a solid-state device are light emitting diodes (LED), integrated circuit (IC), Transistors, liquid crystal display (LCD) etc.
A solid-state device such as a transistor, refers to a semiconductor component that is used to control the flow of voltage or current and as a gate (switch) for electronic signals. Thus, a transistor allows for the amplification, control and generation of electronic signals in a circuit.
Hence, solid-state devices need constant power to operate. The timing functions are initiated by the presence or absence of a separate "trigger" signal.
Basically, these solid-state devices use the optical and electrical properties of semiconductor components such as transistors, triacs, thyristors, diodes to perform its input-output switching and isolation functions.