Answer:
The calculated density will be larger
Explanation:
The calculated density will be <u>larger</u>. Because, the volume is taken accurately, by the water displacement method. But, when we the took the mass, the water was present on the unknown solid. So, the mass of that water was added to the original mass of the solid. Hence, the mass measured was larger than the original mass. We, know from the formula of density that density is directly proportional to the mass of the object.
Density = Mass/Volume
Hence, the larger measured mass means the larger value of density.
Thus we can balance the oxygen atoms by putting a prefix of 25/2 on the left side. To obtain a equation containing whole numbers, we multiply the entire equation by 2. This gives the final equation. 2 C8H18 + 25 O2 ---> 16 CO2 +18 H2O.
The amount of energy released when 0.06 kg of mercury condenses at the same temperature can be calculated using its latent heat of fusion which is the opposite of melting. Latent heat of fusion and melting can be used because they have the same magnitude, but opposite signs. Latent heat is the amount of energy required to change the state or phase of a substance. For latent heat, there is no temperature change. The equation is:
E = m(ΔH)
where:
m = mass of substance
ΔH = latent heat of fusion or melting
According to data, the ΔH of mercury is approximately 11.6 kJ/kg.
E = 0.06kg (11.6 kJ/kg) = 0.696 kJ or 696 J
The answer is D. 697.08 J. Note that small differences could be due to rounding off or different data sources.
Answer is: there are 3.011·10²³ atoms of calcium.
n(Ca) = 0.50 mol; amount of substance(calcium).
Na = 6.022·10²³ 1/mol; Avogadro's constant or number.
N(Ca) = n(Ca) · Na.
N(Ca) = 0.50 mol · 6.022·10²³ 1/mol.
N(Ca) = 3.011·10²³; number of calcium atoms.
The mole is an SI unit which measures the number of particles in substance. One mole is equal to <span><span>6.022</span></span>·<span><span><span>10</span></span></span>²³<span> atoms.</span>