Heat of vaporization of water will be required as water is already at it's boiling point thus heat required will be 540*10=5400 cal
Answer:
166,600J
Explanation:
Kinetic energy (K.E), which is the energy due to motion of a body, can be calculated by using the formula;
K.E = 1/2 × m × v²
Where;
K.E = kinetic energy (joules)
m = mass of body (kg)
v = speed or velocity (m/s)
According to this question, the mass of the roller coaster is 833.0 kg while its velocity/speed is 20.0m/s.
K.E = 1/2 × 833 × 20²
K.E = 1/2 × 833 × 400
K.E = 1/2 × 333200
K.E = 166,600
Therefore, the kinetic energy of the roller coaster car is 166,600J.
Answer:
Increase in CO2 (g) over time.
No NaHCO3 (s) will be left after a time
Explanation:
The reaction, shown below;
2NaHCO3(s) → Na2CO3(s)+CO2(g)+H2O(ℓ) is a decomposition reaction. A decomposition reaction is a kind of chemical reaction in which a given chemical specie breaks up to give other chemical species. Decomposition may be induced by heat or light.
Usually, there is only one reactant in a decomposition reaction; the specie that disintegrates into the products. This reactant usually decreases in concentration steadily because it is converted into products. This is why the mass of NaHCO3(s) in the system continues to decrease steadily until it finally falls to zero.
Conversely, the concentration (for aqueous) or volume (for gases) or mass (for solid) products of the reaction increases steadily as the reaction progresses. This explains why the volume of CO2 in the system will steadily increase over time.
Mass and Volume!
Hope this helps. :)