Answer:
The formula is the form -
m λ = d sin Θ
As the wavelength λ is decreased sin Θ will also decrease.
One can see from the derivation that as the wavelength, being considered,
is decreased the dispersion will also decrease.
Answer:
w=255
Explanation:
The change in internal energy is given by the first law:
ΔE = Q - w
where ΔE is the change in internal energy of the system
q is the heat added to the system
w is the work done *by* the system on the surroundings
So, for the first phase of this process:
ΔE = Q - w
Q=160J
w=309J
ΔE = 160J - 309J = -149J
To bring the system back to its initial state after this, the internal energy must change by +149J (the system myst gain back the 149 J of energy it lost). We are told that the system loses 106 J of heat in returning to its initial state, so the work involved is given by:
ΔE = Q - w
+149J = -106J - w
255J = -w
w = -255J
Answer:

Explanation:
Let suppose that centrifuge is rotating at constant angular speed, which means that resultant acceleration is equal to radial acceleration at given radius, whose formula is:

Where:
- Angular speed, measured in radians per second.
- Radius of rotation, measured in meters.
The angular speed is first determined:

Where
is the angular speed, measured in revolutions per minute.
If
, the angular speed measured in radians per second is:


Now, if
and
, the resultant acceleration is then:


If gravitational acceleration is equal to 9.807 meters per square second, then the radial acceleration is equivalent to 1006.382 times the gravitational acceleration. That is:

B. Red and Blue is the correct answer
Explanation:
Below is an attachment containing the solution