Height (y) = 36t - 16t^2, where t = time in seconds (s).
Our height (y) after 1s = 36(1) - 16(1)^2
y = 36 - 16 = 20 ft
So it reached a height of 20 ft during that 1 second, which means that at that 1 second it had a velocity of 20ft/s, since v = d(distance)/t = 20ft/1s
Answer: Explanation:
If the net force on an object is doubled, its acceleration will double If the mass of an object is doubled, the acceleration will be halved .
Answer:
v = 7.4 m/s
Explanation:
Given that,
Mass if a volleyball, m = 5 kg
The ball reaches a height of 2.8 m
We need to find how fast the ball is going as it bumped into the air. Ket the velocity is v. Using the conservation of energy to find it as follows :

So, the required speed is 7.4 m/s. Hence, the correct option is (b).
Answer:
<h2>104 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 26 × 4
We have the final answer as
<h3>104 N</h3>
Hope this helps you
Answer:
f = 1 m
Explanation:
The magnification of the lens is given by the formula:

where,
M = Magnification = 4
q = image distance = 5 m
p = object distance = ?
Therefore,

Now using thin lens formula:

<u>f = 1 m</u>