In the reaction between 1 molecule of bromine and 2 molecules of potassium chloride, there are six atoms in the products.
Let's consider the balanced equation for the reaction between 1 molecule of bromine and 2 molecules of potassium chloride. This is a single replacement reaction.
Br₂ + 2 KCl ⇒ 2 KBr + Cl₂
We obtain as products, 2 molecules of potassium bromide and 1 molecule of chlorine.
- 1 molecule of KBr has 2 atoms, so 2 molecules contribute with 4 atoms.
- 1 molecule of Cl₂ has 2 atoms.
- The 4 atoms from KBr and the 2 atoms from Cl₂ make a total of 6 atoms.
In the reaction between 1 molecule of bromine and 2 molecules of potassium chloride, there are six atoms in the products.
Learn more: brainly.com/question/21850455
I believe it's D. The centripetal force moves away from the center, but the marble stays there due to the string.
Answer:
1 Ampere.
Explanation:
From the question given above, the following data were obtained:
Resistor 1 (R₁) = 20 ohm
Resistor (R₂) = 20 ohm
Voltage (V) = 10 V
Current (I) =?
Next, we shall determine the equivalent resistance in the circuit. This can be obtained as follow:
Resistor 1 (R₁) = 20 ohm
Resistor (R₂) = 20 ohm
Equivalent Resistance (R) =?
Since the resistors are in parallel connection, the equivalent resistance can be obtained as follow:
R = (R₁ × R₂) / (R₁ + R₂)
R = (20 × 20) / (20 + 20)
R = 400 / 40
R = 10 ohm
Finally, we shall determine the total current in the circuit. This can be obtained as illustrated below:
Voltage (V) = 10 V
Equivalent Resistance (R) = 10 ohm
Current (I) =?
V = IR
10 = I × 10
Divide both side by 10
I = 10 / 10
I = 1 Ampere
Therefore, the total current in the circuit is 1 Ampere.
On a similar problem wherein instead of 480 g, a 650 gram of bar is used:
Angular momentum L = Iω, where
<span>I = the moment of inertia about the axis of rotation, which for a long thin uniform rod rotating about its center as depicted in the diagram would be 1/12mℓ², where m is the mass of the rod and ℓ is its length. The mass of this particular rod is not given but the length of 2 meters is. The moment of inertia is therefore </span>
<span>I = 1/12m*2² = 1/3m kg*m² </span>
<span>The angular momentum ω = 2πf, where f is the frequency of rotation. If the angular momentum is to be in SI units, this frequency must be in revolutions per second. 120 rpm is 2 rev/s, so </span>
<span>ω = 2π * 2 rev/s = 4π s^(-1) </span>
<span>The angular momentum would therefore be </span>
<span>L = Iω </span>
<span>= 1/3m * 4π </span>
<span>= 4/3πm kg*m²/s, where m is the rod's mass in kg. </span>
<span>The direction of the angular momentum vector - pseudovector, actually - would be straight out of the diagram toward the viewer. </span>
<span>Edit: 650 g = 0.650 kg, so </span>
<span>L = 4/3π(0.650) kg*m²/s </span>
<span>≈ 2.72 kg*m²/s</span>
Answer:
a. Tiempo = 25000 segundos
b. Distancia = 19200 metros
Explanation:
Dados los siguientes datos;
Velocidad = 8 m/s
Distancia = 200 km a metros = 200 * 1000 = 200,000
Para encontrar el tiempo para cubrir la distancia anterior;
Tiempo = distancia/velocidad
Tiempo = 200000/8
Tiempo = 25000 segundos
b. Para encontrar la distancia recorrida en 40 minutos;
Tiempo = 40 minutos a segundos = 40 * 60 = 2400 segundos
Distancia = velocidad * tiempo
Distancia = 8 * 2400
Distancia = 19200 metros