Answer:
Between 120 and 180 seconds
According to Lawson's criterion, the outcome is determined by the product of ion density and confinement time because the temperature must be maintained for a sufficient confinement time and with a sufficient ion thickness to obtain a net gain of power from a fusion reaction.
<h3>What are
Lawson's criterion?</h3>
- The overall conditions that must be met in order to produce more energy than is required for plasma heating are usually expressed in terms of the product of ion density and confinement time, a condition known as Lawson's criterion.
- In nuclear fusion devices, confinement time is defined as the amount of time the plasma is kept at a temperature above the critical ignition temperature.
- Even at temperatures high enough to overcome the coulomb barrier to nuclear fusion, a critical density of ions must be maintained in order to achieve a net yield of energy from the reaction.
- Because the density required for a net energy yield is correlated with the confinement time for hot plasma, the minimum condition for a productive fusion reaction is typically stated in terms of the product of ion density and confinement time, which is known as Lawson's criterion.
To learn more about Lawson's criterion, refer:
brainly.com/question/28303495
#SPJ4
Answer:
134.77 mm
Explanation:
Wave length of light λ = 599 x 10⁻⁹ m
Slit separation d = 20 x 10⁻⁶ m
Screen distance D = 3 m
Distance of second dark fringe from centre
= 1.5 x λ D / d
Putting the values given above
distance = 
= 134.77 x 10⁻³ m
= 134.77 mm.
Answer: True.
Explanation:
You would be able to visualize the basketballs height going up and when it sinks down into the hoop.
Answer:
The most common products include aerosols, anti-freeze, asbestos, fertilizers, motor oil, paint supplies, photo chemicals, poisons, and solvents, cleaning supplies.
Explanation:
Use homemade cleaners
You can find local retailers to take rechargeable batteries from laptop computers, cordless power tools, cellular and cordless phones, and camcorders at the Rechargeable Battery Recycling Corporation’s website