1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Semenov [28]
3 years ago
10

An Austin volleyball player bumps a 5 kg ball into the air. It reaches a height of 2.8 meters. How fast was the ball going as it

got bumped into the air?
O 137.2 m/s
O 7.4 m/s
O 19.6 m/s
O 14 m/s
Physics
1 answer:
KATRIN_1 [288]3 years ago
6 0

Answer:

v = 7.4 m/s

Explanation:

Given that,

Mass if a volleyball, m = 5 kg

The ball reaches a height of 2.8 m

We need to find how fast the ball is going as it bumped into the air. Ket the velocity is v. Using the conservation of energy to find it as follows :

mgh=\dfrac{1}{2}mv^2\\\\v=\sqrt{2gh} \\\\v=\sqrt{2\times 9.8\times 2.8} \\\\=7.4\ m/s

So, the required speed is 7.4 m/s. Hence, the correct option is (b).

You might be interested in
A golf club hits a stationary 0.05kg golf ball with and average force of 5.0 x 10^3 newtons accelerating the ball at 44 meters p
maxonik [38]

Answer: The magnitude of impulse imparted to the ball by the golf club is 2.2 N seconds

Explanation:

Force applied on the golf ball = 5.0\times 10^3 N

Mass of the ball = 0.05 kg

Velocity with which ball is accelerating = 44 m/s

Time period over which forece applied = t

f=ma=\frac{m\times v}{t}

t=\frac{0.05 kg\times 44m/s}{5.0\times 10^3 N}=4.4\times 10^{-4} seconds

Impulse=(force)\times (time)=f\times t = 5.0\times 10^3\times 4.4\times 10^{-4} seconds=2.2 Newton seconds

The magnitude of impulse imparted to the ball by the golf club is 2.2 N seconds

7 0
3 years ago
The force measuring instrument is called
Phoenix [80]
This instrument is called a spring scale.
5 0
3 years ago
Read 2 more answers
What stores energy for a quick release in a cell?
luda_lava [24]
It is the mitochondria of a cell that stores energy for a quick release. <span>Mitochondria break down glucose to release the energy for cells to use. Hope this answers the question. Have a nice day. Feel free to ask more questions.</span>
5 0
3 years ago
After a laser bean passes through two thin parallel slits, thefirst completely dark fringes occur at ± 15.00with the original di
PSYCHO15rus [73]

Answer:

143 °

Explanation:

a ) If d be the distance between slits , λ be wavelength of light used and at angle θ nth dark fringe is formed then

d sinθ = ( 2n+1) λ/2

for first dark fringe

d sinθ = λ/2

d /λ = 1/ 2 sinθ

1 / 2 sin15

= 1.93

b )

For intensity of fringe at angle θ,  the relation is

I = I₀ cos²θ

I / I₀  = cos²θ/2

Given I / I₀ =0. 1

0.1 = cos²θ/2

θ/2 = 71.5

θ = 143 °

4 0
3 years ago
A hollow cylinder that is rolling without slipping is given a velocity of 5.0 m/s and rolls up an incline to a vertical height o
inysia [295]

Answer:

The hollow cylinder rolled up the inclined plane by 1.91 m

Explanation:

From the principle of conservation of mechanical energy, total kinetic energy = total potential energy

M.E_T = \frac{1}{2}mv^2 + \frac{1}{2} I \omega^2 + mgh

The total energy at the bottom of the inclined plane = total energy at the top of the inclined plane.

\frac{1}{2}mv_i^2 + \frac{1}{2} I \omega_i^2 + mg(0) =  \frac{1}{2}mv_f^2 + \frac{1}{2} I \omega_f^2 + mgh

moment of inertia, I, of a hollow cylinder = ¹/₂mr²

substitute for I in the equation above;

\frac{1}{2}mv_i^2 + \frac{1}{2} (\frac{1}{2}mr^2  \omega_i^2) =  \frac{1}{2}mv_f^2 + \frac{1}{2} (\frac{1}{2}mr^2  \omega_f^2) + mgh\\\\ but \ v = r \omega\\\\\frac{1}{2}mv_i^2 + \frac{1}{2} (\frac{1}{2}m v_i^2  ) =  \frac{1}{2}mv_f^2 + \frac{1}{2} (\frac{1}{2}m v_f^2) + mgh\\\\\frac{1}{2}mv_i^2 +\frac{1}{4}mv_i^2 = \frac{1}{2}mv_f^2 +\frac{1}{4}mv_f^2 +mgh\\\\\frac{3}{4}mv_i^2 = \frac{3}{4}mv_f^2 +mgh\\\\mgh = \frac{3}{4}mv_i^2 -  \frac{3}{4}mv_f^2\\\\gh = \frac{3}{4}v_i^2 -  \frac{3}{4}v_f^2\\\\

h = \frac{3}{4g}(v_1^2 -v_f^2)

given;

v₁ = 5.0 m/s

vf = 0

g = 9.8 m/s²

h = \frac{3}{4g}(v_1^2 -v_f^2) =\frac{3}{4*9.8}(5^2 -0) = 1.91 \ m

Therefore, the hollow cylinder rolled up the inclined plane by 1.91 m

5 0
3 years ago
Other questions:
  • A car traveled 1025 km from El Paso to Dallas iin 13.5 hr. What was its average velocity
    6·1 answer
  • A 78.5-kg man is standing on a frictionless ice surface when he throws a 2.40-kg book horizontally at a speed of 11.3 m/s. With
    8·2 answers
  • A battery with an emf of 1.50 V has an internal resistance r. When connected to a resistor R, the terminal voltage is 1.40 V and
    15·1 answer
  • A sinusoidal wave travels along a string. if the time for a particular point to move from maximum displacement to zero displacem
    5·1 answer
  • A 2.0 kg particle moves in a circle of radius 3.1 m. As you look down on the plane of its orbit, the particle is initially movin
    5·2 answers
  • a bus travelling on a straight road at 25m/s accelerates uniformly at 5m/s squared for 2 seconds. find its speed in kilometres p
    9·1 answer
  • What is the equation for finding the acceleration of an object moving in a straight line?
    14·1 answer
  • What type of circuit is shown?
    9·2 answers
  • Andy has two samples of liquids. Sample A has a pH of 4, and sample B has a pH of 6. What can Andy conclude about these two samp
    8·1 answer
  • You will get the most accurate resting heart rate if you take your pulse for ___ consecutive mornings and average the number
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!