The correct answer to the question is : A) The velocity of the cart after it hits the wall.
EXPLANATION:
Before answering this question, first we have to understand impulse.
Impulse of a body is defined as the change in momentum or the product of force with time.
Mathematically impulse = m ( v- u ).
Here, v is the final momentum and u is the initial momentum.
Hence, we need the velocity of the cart after it hits the wall in order to calculate the impulse of the lab cart.
To determine your line of latitude , you would need to know the angle your location (line) makes with the equatorial plane at earth's center.
<h3>What is Line of latitude?</h3>
This is also referred to as parallels and it is defined as the imaginary lines that divide the Earth. They run from east to west and are used to specify the north and south sides of the Earth.
To determine the line of latitude , it is imperative to know the angle your location (line) makes with the equatorial plane at earth's center which is therefore the reason why it was chosen as the most appropriate choice.
Read more about Line of latitude here brainly.com/question/523705
#SPJ1
Answer:
12500(kg*m/s)
Explanation:
F=ma=mv/t=p/t
p=F*t=500N*25 s=12500(kg*m/s)
That's called the "normal" to the surface at that point.
Here if we assume that there is no air friction on both balls then we can say

now the acceleration is given as


so here both the balls will have same acceleration irrespective of size and mass
so we can say that to find out the time of fall of ball we can use


now from above equation we can say that time taken to hit the ground will be same for both balls and it is irrespective of its mass and size