Answer:
Half life is 6 years.
Explanation:
T½ = In2 / λ
Where λ = decay constant.
But N = No * e^-λt
Where N = final mass after a certain period of time
No = initial mass
T = time
N = 0.625g
No = 10g
t = 24 years
N = No* e^-λt
N / No = e^-λt
λ = -( 1 / t) In N / No (inverse of e is In. Check logarithmic rules)
λ = -(1 / 24) * In (0.625/10)
λ = -0.04167 * In(0.0625)
λ = -0.04167 * (-2.77)
λ = 0.1154
T½ = In2 / λ
T½ = 0.693 / 0.1154
T½ = 6.00 years.
The half life of radioactive cobalt-60 is 6 years
The correct answer is A.) Volatile. please mark brainliest (:
Answer:
37.8 L OF CARBON MONOXIDE IS REQUIRED TO PRODUCE 18.9 L OF NITROGEN.
Explanation:
Equation for the reaction:
2 CO + 2 NO ------> N2 + 2 CO2
2 moles of carbon monoxide reacts with 2 moles of NO to form 1 mole of nitrogen
At standard temperature and pressure, 1 mole of a gas contains 22.4 dm3 volume.
So therefore, we can say:
2 * 22.4 L of CO produces 22.4 L of N2
44.8 L of CO produces 22.4 L of N2
Since, 18.9 L of Nitrogen is produced, the volume of CO needed is:
44.8 L of CO = 22.4 L of N
x L = 18.9 L
x L = 18.9 * 44.8 / 22.4
x L = 18.9 * 2
x = 37.8 L
The volume of Carbon monoxide required to produce 18.9 L of N2 is 37.8 L
Answer: The correct option is The properties of a noble gas.
Explanation: There are 7 periods in the periodic table.
The last element of each period are Helium (He), Neon (Ne), Argon (Ar), Krypton (Kr), Xenon (Xe), Radon (Rn) and Ununoctium (Uuo).
- The electronic configuration for Helium is
. For He, The outermost electrons are 2.
- The electronic configuration for all the other elements is
( where, n = 2, 3, 4, 5, 6 and 7 respectively). For all the other gases, the outermost electrons are 8.
All these elements have stable electronic configuration and are not reactive in nature. Hence, they are considered as noble gases.
Therefore, the last element of each period always have the properties of a noble gas.
Probably Fresh vegetables, it can rot out, that’d be my guess, it’s not canned