I don't think so. "It's not a matter of pigment discrimination: Red and yellow bell peppers are essentially just green peppers that have been allowed to ripen"
214, 84 Po ----Beta decay
Answer:
0.595 M
Explanation:
The number of moles of water in 1L = 1000g/18g/mol = 55.6 moles of water.
Mole fraction = number of moles of KNO3/number of moles of KNO3 + number of moles of water
0.0194 = x/x + 55.6
0.0194(x + 55.6) = x
0.0194x + 1.08 = x
x - 0.0194x = 1.08
0.9806x= 1.08
x= 1.08/0.9806
x= 1.1 moles of KNO3
Mole fraction of water= 55.6/1.1 + 55.6 = 0.981
If
xA= mole fraction of solvent
xB= mole fraction of solute
nA= number of moles of solvent
nB = number of moles of solute
MA= molar mass of solvent
MB = molar mass of solute
d= density of solution
Molarity = xBd × 1000/xAMA ×xBMB
Molarity= 0.0194 × 1.0627 × 1000/0.981 × 18 × 0.0194×101
Molarity= 20.6/34.6
Molarity of KNO3= 0.595 M
Answer:
$149 depending where you live.
Explanation:
Answer : Option (A) Accelerator 2 model has the lowest percentage of energy lost as waste.
Solution : Given,
For Accelerator 1 model,
Input energy = 2078.3 J
Wasted energy = 663.1 J
Output energy = 1415.2 J
For Accelerator 2 model,
Input energy = 7690.0 J
Wasted energy = 2337.5 J
Output energy = 5353.5 J
For Accelerator 3 model,
Input energy = 4061.9 J
Wasted energy = 2259.6 J
Output energy = 1802.3 J
Formula used for lowest percentage of energy lost as waste is:
% energy lost as waste = (Total energy wasted / Total input energy ) × 100
For Accelerator 1 model,
% energy lost as waste = = 31.90%
For Accelerator 2 model,
% energy lost as waste = = 30.39%
For Accelerator 3 model,
% energy lost as waste = = 55.62%
So, we conclude that the Accelerator 2 model has the lowest percentage of energy lost as waste.