115 divided by 2 equals 57.5
Answer:
0.4113772 s
Explanation:
Given the following :
Mass of bullet (m1) = 8g = 0.008kg
Initial horizontal Velocity (u1) = 280m/s
Mass of block (m2) = 0.992kg
Maxumum distance (x) = 15cm = 0.15m
Recall;
Period (T) = 2π√(m/k)
According to the law of conservation of momentum : (inelastic Collison)
m1 * u1 = (m1 + m2) * v
Where v is the final Velocity of the colliding bodies
0.008 * 280 = (0.008 + 0.992) * v
2.24 = 1 * v
v = 2.24m/s
K. E = P. E
K. E = 0.5mv^2
P.E = 0.5kx^2
0.5(0.992 + 0.008)*2.24^2 = 0.5*k*(0.15)^2
0.5*1*5.0176 = 0.5*k*0.0225
2.5088 = 0.01125k
k = 2.5088 / 0.01125
k = 223.00444 N/m
Therefore,
Period (T) = 2π√(m/k)
T = 2π√(0.992+0.008) / 233.0444
T = 2π√0.0042910
T = 2π * 0.0655059
T = 0.4113772 s
Answer:
'Daniela had a 5-meter head start, and Leonard caught up to her at 25 meters.'
Explanation:
hope that helps :)
The cart's acceleration to the right after the mass is released is determined as 7.54 m/s².
<h3>
Acceleration of the cart</h3>
The acceleration of the cart is determined from the net force acting on the mass-cart system.
Upward force = Downward force
ma = mg
13a = 10(9.8)
13a = 98
a = 98/13
a = 7.54 m/s²
Thus, the cart's acceleration to the right after the mass is released is determined as 7.54 m/s².
Learn more about acceleration here: brainly.com/question/14344386
#SPJ1
Answer:
The work done on the athlete is approximately 2.09 J
Explanation:
From the definition of the work done by a variable force:

and substituting with the function of our problem:
