Answer:
vDP = 21.7454 m/s
θ = 200.3693°
Explanation:
Given
vDE = 7.5 m/s
vPE = 20.2 m/s
Required: vDP
Assume that
vDE to be in direction of - j
vPE to be in direction of i
According to relative motion concept the velocity vDP is given by
vDP = vDE - vPE (I)
Substitute in (I) to get that
vDP = - 7.5 j - 20.2 i
The magnitude of vDP is given by
vDP = √((- 7.5)²+(- 20.2)²) m/s = 21.7454 m/s
θ = Arctan (- 7.5/- 20.2) = 20.3693°
θ is in 3rd quadrant so add 180°
θ = 20.3693° + 180° = 200.3693°
Image #3 good luck!!!!!!!!!!!
Answer:
L = μ₀ n r / 2I
Explanation:
This exercise we must relate several equations, let's start writing the voltage in a coil
= - L dI / dt
Let's use Faraday's law
E = - d Ф_B / dt
in the case of the coil this voltage is the same, so we can equal the two relationships
- d Ф_B / dt = - L dI / dt
The magnetic flux is the sum of the flux in each turn, if there are n turns in the coil
n d Ф_B = L dI
we can remove the differentials
n Ф_B = L I
magnetic flux is defined by
Ф_B = B . A
in this case the direction of the magnetic field is along the coil and the normal direction to the area as well, therefore the scalar product is reduced to the algebraic product
n B A = L I
the loop area is
A = π R²
we substitute
n B π R² = L I (1)
To find the magnetic field in the coil let's use Ampere's law
∫ B. ds = μ₀ I
where B is the magnetic field and s is the current circulation, in the coil the current circulates along the length of the coil
s = 2π R
we solve
B 2ππ R = μ₀ I
B = μ₀ I / 2πR
we substitute in
n ( μ₀ I / 2πR) π R² = L I
n μ₀ R / 2 = L I
L = μ₀ n r / 2I
D. gravitational force. is your answer hope this helps
Apply Gay-Lussac's law:
P/T = const.
P = pressure, T = temperature, the quotient of P/T must stay constant.
Initial P and T values:
P = 180kPa, T = -8.0°C = 265.15K
Final P and T values:
P = 245kPa, T = ?
Set the initial and final P/T values equal to each other and solve for the final T:
180/265.15 = 245/T
T = 361K