The approximate amount of thrust(force) you need to apply to the lander to
keep its velocity roughly constant is zero.
<h3>What is Newton's second law of motion?</h3>
Newton's second law of motion states that the acceleration the force acting
on the object is directly proportional to its rate of change of momentum.
F = m a
If the object is moving with uniform velocity, it simply means that the
acceleration is zero, and the corresponding force will also be zero.
Read more about Constant velocity here brainly.com/question/3052539
Well, first of all, there's no such thing as "fully charged" for a capacitor.
A capacitor has a "maximum working voltage", because of mechanical
or chemical reasons, just like a car has a maximum safe speed. But
anywhere below that, cars and capacitors do their jobs just fine, without
any risk of failing.
So we have a capacitor that has some charge on it, and therefore some
voltage across it. From the list of choices above . . .
<span>-- Both plates have the same amount of charge.
Yes. And both plates have opposite TYPES of charge.
One plate is loaded with electrons and is negatively charged.
The other plate is missing electrons and is positively charged.
-- There is a potential difference between the plates.
Yes. That's the "voltage" mentioned earlier.
It's a measure of how badly the extra electrons want to jump
from the negative plate to the positive plate.
-- Electric potential energy is stored.
Yes. It's the energy that had to be put into the capacitor
to move electrons away from one plate and cram them
onto the other plate.
</span>
Answer:
Convergent.
Explanation:
Just as oceanic crust is formed at mid-ocean ridges, it is destroyed in subduction zones. Subduction is the important geologic process in which a tectonic plate made of dense lithospheric material melts or falls below a plate made of less-dense lithosphere at a convergent plate boundary.
1) The equivalent resistance of two resistors in parallel is given by:

so in our problem we have

and the equivalent resistance is

2) If we have a battery of 12 V connected to the circuit, the current in the circuit will be given by Ohm's law, therefore: