A mixed cost contains a variable element and a fixed element.
Option a
<u>Explanation:</u>
Mixed costs are those costs that has both variable and fixed component. Example: operating cost of a machinery includes fixed costs that cannot be changed with other variable costs like fuel, insurance, depreciation, etc.
It is also named as semi-variable costs. And the formula to calculate mixed cost is as follows,

where,
- y is the "total cost
"
- a is the "fixed cost per period"
- b is the "variable rate per unit of activity"
- x is the "number of units of activity"
Answer:
Heat energy required (Q) = 3,000 J
Explanation:
Find:
Mass of water (M) = 200 g
Change in temperature (ΔT) = 15°C
Specific heat of water (C) = 1 cal/g°C
Find:
Heat energy required (Q) = ?
Computation:
Q = M × ΔT × C
Heat energy required (Q) = Mass of water (M) × Change in temperature (ΔT) × Specific heat of water (C)
Heat energy required (Q) = 200 g × 15°C × 1 cal/g°C
Heat energy required (Q) = 3,000 J
<span>A capacitor with a very large capacitance is in series with a capacitor
that has a very small capacitance.
The capacitance of the series combination is slightly smaller than the
capacitance of the small capacitor. (choice-C)
The capacitance of a series combination is
1 / (1/A + 1/B + 1/C + 1/D + .....) .
If you wisk, fold, knead, and mash that expression for a while,
you find that for only two capacitors in series, (or 2 resistors or
two inductors in parallel), the combination is
(product of the 2 individuals) / (sum of the individuals) .
In this problem, we have a humongous one and a tiny one.
Let's call them 1000 and 1 .
Then the series combination is
(1000 x 1) / (1000 + 1)
= (1000) / (1001)
= 0.999 000 999 . . .
which is smaller than the smaller individual.
It'll always be that way. </span>
Answer:
x = 1.6 + 1.7 t^2 omitting signs
a) at t = 0 x = 1.6 m
b) V = d x / d t = 3.4 t
at t = 0 V = 0
c) A = d^2 x / d t^2 = 3.4 (at t = 0 A = 3.4 m/s^2)
d) x = 1.6 + 1.7 * (4.4)^2 = 34.5 (position at 4.4 sec = 34.5 m)