Answer:
Frequency = 3.0 Hertz
Explanation:
Given the following data;
Period = 0.333 seconds
To find the frequency;
Mathematically, frequency of a wave is given by the formula;
Frequency = 1/period
Substituting into the formula, we have;
Frequency = 1/0.333
Frequency = 3.0 Hertz
Answer:
3.49 seconds
3.75 seconds
-43200 ft/s²
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration

Time the parachutist falls without friction is 3.19 seconds

Speed of the parachutist when he opens the parachute 31.32 m/s. Now, this will be considered as the initial velocity

So, time the parachutist stayed in the air was 3.19+0.3 = 3.49 seconds


Now the initial velocity of the last half height will be the final velocity of the first half height.

Since the height are equal


Time taken to fall the first half is 2.65 seconds
Total time taken to fall is 2.65+1.1 = 3.75 seconds.
When an object is thrown with a velocity upwards then the velocity of the object at the point to where it was thrown becomes equal to the initial velocity.

Magnitude of acceleration is -43200 ft/s²
Answer:
20 °C
Explanation:
Ideal gas law:
PV = nRT
Rearranging:
P / T = nR / V
Since n, R, and V are constant:
P₁ / T₁ = P₂ / T₂
488.2 kPa / T = 468 kPa / 281.15 K
T = 293.29 K
T = 20.1 °C
Rounded, the temperature was 20 °C.
Answer:
The energy entering, reflecting, absorbed, and emitted by the earth system are the components of the Earth's radiation budget.
Explanation:
I hope this helps also I hope you have a great day and a new year.
Answer:
7. Your answer is correct dear, just add the unit
8. answer is 1.17m/s²
Explanation:
queation 7.
m = 3kg, F = 9N, a ?
F = ma
a = F/m = 9/3 = 3m/s²
Use the same approach for question 8