1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lunna [17]
3 years ago
11

Who is the leader of the party's national committee

Physics
2 answers:
ad-work [718]3 years ago
6 0

national chairperson is the answer.

cestrela7 [59]3 years ago
3 0
That would be <span>the national chairperson

-I hope this helped.</span>
You might be interested in
The force experienced by a unit test charge is a measure of the strength of an electric:
Flauer [41]

an electric field is the answer

3 0
3 years ago
Read 2 more answers
Which evidence supports the big band theory select 3 options
ruslelena [56]

Answer:

Explanation:

There are different theories and evidence about the big bang, in this case, we're going to see three evidence.

The galaxies are moving from us, this means space is expanded, this in consequence Big Bang's explosion.

The cosmic microwave background radiation is related to the early warmth of the universe.

The observed abundance of hydrogen, helium, deuterium, lithium, these are checked from the spectra of the oldest stars.

5 0
3 years ago
Se lanza verticalmente una esfera con una rapidez de 30m/se. Determinar la rapidez de la esfera a una altura de 40m (g=10m/s2)
sergeinik [125]

v^2-{v_0}^2=2a(x-x_0)

dónde v es la velocidad de la esfera, v_0 es suya velocidad inicial, a=-g la aceleración debida a la gravedad, x la posición, y x_0 la posición inicial. Tomamos x_0=0\,\mathrm m a referirse a la posición de la esfera en el momento que la esfera fue lanzada.

Entonces

v^2-\left(30\,\dfrac{\mathrm m}{\mathrm s}\right)^2=2\left(-10\,\dfrac{\mathrm m}{\mathrm s^2}\right)(40\,\mathrm m)

\implies v^2=100\,\dfrac{\mathrm m^2}{\mathrm s^2}\implies v=\pm10\,\dfrac{\mathrm m}{\mathrm s}

Esto nos dice que la esfera alcanza una altura de 40 m en dos momentos - una vez hacia arriba y una vez hacia abajo. Sin embargo, independientemente del signo de la velocidad, sabemos que suya magnitud es 10 m/s, y así tenemos una rapidez de 10 m/s también en ambos momentos.

4 0
3 years ago
A block weighting 400kg rests on a horizontal surface and support on top of it another block of weight 100kg placed on the top o
masha68 [24]

The horizontal force applied to the block is approximately 1,420.84 N

The known parameters;

The mass of the block, w₁ = 400 kg

The orientation of the surface on which the block rest, w₁ = Horizontal

The mass of the block placed on top of the 400 kg block, w₂ = 100 kg

The length of the string to which the block w₂ is attached, l = 6 m

The coefficient of friction between the surface, μ = 0.25

The state of the system of blocks and applied force = Equilibrium

Strategy;

Calculate the forces acting on the blocks and string

The weight of the block, W₁ = 400 kg × 9.81 m/s² = 3,924 N

The weight of the block, W₂ = 100 kg × 9.81 m/s² = 981 N

Let <em>T</em> represent the tension in the string

The upward force from the string = T × sin(θ)

sin(θ) = √(6² - 5²)/6

Therefore;

The upward force from the string = T×√(6² - 5²)/6

The frictional force = (W₂ - The upward force from the string) × μ

The frictional force, F_{f2} = (981 - T×√(6² - 5²)/6) × 0.25

The tension in the string, T = F_{f2} × cos(θ)

∴ T = (981 - T×√(6² - 5²)/6) × 0.25 × 5/6

Solving, we get;

T = \dfrac{5886}{\sqrt{6^2 - 5^2} + 28.8} \approx 183.27

Frictional \ force, F_{f2} = \left (981 -  \dfrac{5886}{\sqrt{6^2 - 5^2} + 28.8}  \times \dfrac{\sqrt{6^2 - 5^2} }{6} \times  0.25 \right) \approx 219.92

The frictional force on the block W₂, F_{f2} ≈ 219.92 N

Therefore;

The force acting the block w₁, due to w₂ F_{w2} = 219.92/0.25 ≈ 879.68

The total normal force acting on the ground, N = W₁ + \mathbf{F_{w2}}

The frictional force from the ground, \mathbf{F_{f1}} = N×μ + \mathbf{F_{f2}} = P

Where;

P = The horizontal force applied to the block

P = (W₁ + \mathbf{F_{w2}}) × μ + \mathbf{F_{f2}}

Therefore;

P = (3,924 + 879.68) × 0.25 + 219.92 ≈ 1,420.84

The horizontal force applied to the block, P ≈ 1,420.84 N

Learn more about friction force here;

brainly.com/question/18038995

3 0
3 years ago
You hear that a storm is moving 15km/HR north. You have been given the storm's______
Elodia [21]
You have been given the storm's velocity.
7 0
3 years ago
Other questions:
  • A 1.00 kg object is attached to a horizontal spring. the spring is initially stretched by 0.500 m, and the object is released fr
    5·1 answer
  • Which is the relationship between algae and fungus?
    5·1 answer
  • Object A of mass M is released from height H, whereas object B of mass 0.5M is released from height 2H. What is the ratio of the
    9·1 answer
  • Is an electron an antiparticle, boson, lepton, or hadron?
    6·1 answer
  • A student swings back and forth from position A to C, as shown. Which of the following happens when the swing moves from Positio
    13·2 answers
  • How many basic locomotor skills are there?
    13·1 answer
  • Did you know that your answer automatically gets reported if you have "idk" anywhere in the answer?
    8·2 answers
  • A 12 V battery is connected across a device with variable resistance. As the resistance of the device increases, determine wheth
    7·1 answer
  • What would be the consequences if the animated structures suddenly become non-polar
    12·1 answer
  • I need help please somebody help me
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!