Answer:
transition metals im sorry if this was too late
Answer:
the knee extensors must exert 15.87 N
Explanation:
Given the data in the question;
mass m = 4.5 kg
radius of gyration k = 23 cm = 0.23 m
angle ∅ = 30°
∝ = 1 rad/s²
distance of 3 cm from the axis of rotation at the knee r = 3 cm = 0.03 m
using the expression;
ζ = I∝
ζ = mk²∝
we substitute
ζ = 4.5 × (0.23)² × 1
ζ = 0.23805 N-m
so
from; ζ = rFsin∅
F = ζ / rsin∅
we substitute
F = 0.23805 / (0.03 × sin( 30 ° )
F = 0.23805 / (0.03 × 0.5)
F F = 0.23805 / 0.015
F = 15.87 N
Therefore, the knee extensors must exert 15.87 N
Gravitational potential energy<span> is </span>energy<span> an object possesses because of its position in a </span>gravitational<span> field. </span><span>The equation for </span>gravitational potential energy<span> is GPE = mgh.
GPE = 1200(1.6)(350) = 672000 J
Hope this answers the question. Have a nice day.</span>
Using the formula: ΔY = V₀y * t + (1/2) * ay * t²
Solve for time and get: 1.968s
Then use: v = d/t in the x-direction and get: d = 3.936