Answer:
4.56 seconds
63.25 m
Explanation:
t = Time taken for the car to stop
u = Initial velocity = 60 km/h = 100 km/h = 100000/3600 = 27.78 m/s
v = Final velocity = 0
s = Displacement
a = Acceleration = -6.1 m/s²
Time taken by the car to stop

Time taken by the car to stop is 4.56 seconds

The total stopping distance would be 63.25 m
Answer: 1.289 m
Explanation:
The path the cobra's venom follows since it is spitted until it hits the ground, is described by a parabola. Hence, the equations for parabolic motion (which has two components) can be applied to solve this problem:
<u>x-component:
</u>
(1)
Where:
is the horizontal distance traveled by the venom
is the venom's initial speed
is the angle
is the time since the venom is spitted until it hits the ground
<u>y-component:
</u>
(2)
Where:
is the initial height of the venom
is the final height of the venom (when it finally hits the ground)
is the acceleration due gravity
Let's begin with (2) to find the time it takes the complete path:
(3)
Rewritting (3):
(4)
This is a quadratic equation (also called equation of the second degree) of the form
, which can be solved with the following formula:
(5)
Where:
Substituting the known values:
(6)
Solving (6) we find the positive result is:
(7)
Substituting (7) in (1):
(8)
We finally find the horizontal distance traveled by the venom:
When you shine a lite through a prism is reflects out light through all of the edges and causes light separation. Or just simply shine a laser through the edge of a sideways piece of glass.
I hope that this was helpful for you.
Answer:
a) y= 3.5 10³ m, b) t = 64 s
Explanation:
a) For this exercise we use the vertical launch kinematics equation
Stage 1
y₁ = y₀ + v₀ t + ½ a t²
y₁ = 0 + 0 + ½ a₁ t²
Let's calculate
y₁ = ½ 16 10²
y₁ = 800 m
At the end of this stage it has a speed
v₁ = vo + a₁ t₁
v₁ = 0 + 16 10
v₁ = 160 m / s
Stage 2
y₂ = y₁ + v₁ (t-t₀) + ½ a₂ (t-t₀)²
y₂ = 800 + 150 5 + ½ 11 5²
y₂ = 1092.5 m
Speed is
v₂ = v₁ + a₂ t
v₂ = 160 + 11 5
v₂ = 215 m / s
The rocket continues to follow until the speed reaches zero (v₃ = 0)
v₃² = v₂² - 2 g y₃
0 = v₂² - 2g y₃
y₃ = v₂² / 2g
y₃ = 215²/2 9.8
y₃ = 2358.4 m
The total height is
y = y₃ + y₂
y = 2358.4 + 1092.5
y = 3450.9 m
y= 3.5 10³ m
b) Flight time is the time to go up plus the time to go down
Let's look for the time of stage 3
v₃ = v₂ - g t₃
v₃ = 0
t₃ = v₂ / g
t₃ = 215 / 9.8
t₃ = 21.94 s
The time to climb is
= t₁ + t₂ + t₃
t_{s} = 10+ 5+ 21.94
t_{s} = 36.94 s
The time to descend from the maximum height is
y = v₀ t - ½ g t²
When it starts to slow down it's zero
y = - ½ g t_{b}²
t_{b} = √-2y / g
t_{b} = √(- 2 (-3450.9) /9.8)
t_{b} = 26.54 s
Flight time is the rise time plus the descent date
t = t_{s} + t_{b}
t = 36.94 + 26.54
t =63.84 s
t = 64 s