It contains no large maria
Answer:
517.5Ns
Explanation:
F=(MV - MU)/t
where MV - MU is the change in momentum,
therefore, MV - MU = Ft
= 345 X 1.
= 517.5Ns
In 2 days there are 48 hours
to find the average speed per hour, divide 2,387 by 48
Which gets you the answer 49.72
Which rounds up to 50
The average speed is 50mph
Answer:
Explanation:
a )
While breaking initial velocity u = 62.5 mph
= 62.5 x 1760 x 3 / (60 x 60 ) ft /s
= 91.66 ft / s
distance trvelled s = 150 ft
v² = u² - 2as
0 = 91.66² - 2 a x 150
a = - 28 ft / s²
b ) While accelerating initial velocity u = 0
distance travelled s = .24 mi
time = 19.3 s
s = ut + 1/2 at²
s is distance travelled in time t with acceleration a ,
.24 = 0 + 1/2 a x 19.3²
a = .001288 mi/s²
= 2.06 m /s²
c )
If distance travelled s = .25 mi
final velocity v = ? a = .001288 mi / s²
v² = u² + 2as
= 0 + 2 x .001288 x .25
= .000644
v = .025 mi / s
= .0025 x 60 x 60 mi / h
= 91.35 mph .
d ) initial velocity u = 59 mph
= 86.53 ft / s
final velocity = 0
acceleration = - 28 ft /s²
v = u - at
0 = 86.53 - 28 t
t = 3 sec approx .
Answer:
Weight
a) weight's vertical component = Normal upward force
b) weight's horizontal component = Friction force = (mass of ball)(acceleration)
These forces depend upon the track,
1) inclined or horizontal
2) steepness.
Explanation
The force of gravity points straight down, but a ball rolling down a ramp doesn't go straight down, it follows the ramp. Therefore, only the component of the weight which points along the direction of the ball's motion can accelerate the ball.
weight's horizontal component = Friction force = (mass of ball)(acceleration)
The other component pushes the ball into the ramp, and the ramp pushes back.
If the ramp is horizontal, then the ball does not accelerate, as gravity pushes the ball into the ramp and not along the surface of the ramp. Hope this helps. Can u give me brainliest
Explanation: