Density = Mass / Volume
V = 1.00 * 4.00 * 2.50 = 10 cm³
22.57 g/cm³ = Mass / 10 cm³
M = 22.57 g/cm³ * 10 cm³
M = 225.7 g
Answer: The mass of the block of osmium is 225.7 g.
C is a mixture!!!!!!!!!!!!!
A. The longest carbon chain is eight, and it has two methyl groups attached to carbon three, and a special group attached to carbon five. Its two names could be:
3-dimethyl-5-(1-methylethyl)octane
3-dimethyl-5-isopropyloctane
Both of these are correct. This is an alkane, because it has all single bonds.
B. This has a triple bond contained between carbons 2 and 3, and has a methyl group off carbon 4. The longest chain is 5. It’s name is:
4-methyl-2-pentyne
This is an alkene, because of the double bond.
C. This has a double bond contained between carbons 2 and 3, and has a methyl off of four and an methyl off of six. The longest chain is eight (follow the longest chain of carbons).
4,6-dimethyl-2-octene
This is an alkene, because of the double bond.
D. This has an ethyl group at 1 and a methyl group at 2 (rotate the compound to make it as clean as possible, in this case, the ring is flipped and rotated to make it alphabetical with the smallest numbers possible). The two names are:
1-ethyl-2-methylbenzene
ortho-ethylmethylbenzene
Both are correct, the ortho prefix telling the location of the ethyl and methyl groups. This is an aromatic structure because of its double bonded ring.
E. The longest chain is nine, and has methyls at three, five, and seven, along with a propyl at five. The name is:
3,5,7-trimethyl-5-propylnonane
This is an alkane, due to the single bonds.
Hope this helps!
Answer:
The volume of the gas is determined, which will allow you to calculate the temperature.
Explanation:
According to Charles law; the volume of a given mass of an ideal gas is directly proportional to its temperature at constant pressure.
This implies that, when the volume of an ideal gas is measured at constant pressure, the temperature of the ideal gas can be calculated from it according to Charles law.
Hence in the Ideal Gas Law lab, the temperature of an ideal gas is measured by determining the volume of the ideal gas.
Mass of molecule (g) = Mr of substance over avarogado constant