Hello!
The molarity of the HBr solution is 0,172 M.
Why?
The neutralization reaction between LiOH and HBr is the following:
HBr(aq) + LiOH(aq) → LiBr(aq) + H₂O(l)
To solve this exercise, we are going to apply the common titration equation:


Have a nice day!
Grams ethanol = 33 ml times .789 gms/ml = 26.037 gms
<span>Moles ethanol = 26.037 gms / 46 gms/mole = .57 moles </span>
<span>Moles water = 67 ml or 67 grams/18 gms/mole = 3.22 moles </span>
<span>total moles = .57 + 3.72 = 4.29 moles </span>
<span>Mole fraction ethanol = .57 moles ethanol / 4.29 moles total = 0.13</span>
<span>Moles fraction water = 3.72 moles water / 4.29 moles total = 0.87</span>
<span>Partial pressure of ethanol = mole fraction ethanol (.13) _ times VP ethanol 43.9 torr) = 5.707 torr </span>
<span>partial pressure water = mole fraction water .87) times VP water (l7.5 torr) = 15.23 torr </span>
<span>Total vapor pressure over solution = 5.71 torr + 15.23 torr = 20.94 torr</span>
Answer:
The central atom has 3 electron domains.
Explanation:
According to the Valence Shell electron pair repulsion theory (VSEPR) put forward by Gillespie and Nyholm in 1957, the shape of a molecule is determined by repulsion between all the electron pairs (electron domains) present in the valence shell.
The electron pairs or electron domains are known to position themselves as far apart in space as possible in order to minimize repulsions.
Hence, when the central atom of a molecule contains three electron domains, they are positioned at an angle of 120° from each other to minimize repulsions. Hence the answer.
The correct answer is False.
Answer:
the boiling of 10g of liquid water