The grams of NaCl that are required to make 150.0 ml of a 5.000 M solution is 43.875 g
calculation
Step 1:calculate the number of moles
moles = molarity x volume in L
volume = 150 ml / 1000 = 0.15 L
= 0.15 L x 5.000 M = 0.75 moles
Step 2: calculate mass
mass = moles x molar mass
molar mass of NaCl = 23 + 35.5 = 58.5 mol /L
mass is therefore =0.75 moles x 58.5 mol /l =43.875 g
Photosynthesizing plants and algae convert light energy into chemical energy, which then gets passed through the food web to plant eaters, flesh eaters, and ultimately to scavengers and decomposers.
A reaction occurs between the two gases Chlorine monofluoride (ClF) and Fluorine (F₂) when they are added together and as a result of the reaction a compound named, Chlorine trifluoride (ClF₃) is formed.
The reaction which occurs by addition of Chlorine monofluoride (ClF) and Fluorine (F₂) is as follows -
ClF (g) + F₂ (g) = ClF₃ (l)
When one molecule of Chlorine monofluoride (ClF) reacts with one molecule of Fluorine (F₂) gas, both the gases react together to form one molecule of Chlorine trifluoride (ClF₃) which is a liquid. Therefore, the above reaction is already balanced.
Chlorine trifluoride (ClF₃) is a greenish-yellow liquid which acts as an important fluorinating agent and is also an interhalogen compound (compounds that are formed by mixing two different halogen compounds together). Other than it's liquid state ClF₃ also can exist as a colorless gas. This compound ClF₃ is a very toxic, very corrosive and powerful oxidizer used as an igniter and propellent in rockets.
Learn more about Chlorine monofluoride (ClF) here-
brainly.com/question/17129650
#SPJ4