1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
goldfiish [28.3K]
3 years ago
11

Car X leaves Northtown traveling at a steady rate of 55 mph.  Car Y leaves 1 hour later following Car X, traveling at a steady r

ate of 60 mph.  Which equation can be used to determine how long after Car X leaves Car Y will catch up?
Mathematics
1 answer:
Elis [28]3 years ago
4 0
Unfortunately, you haven't shared the equations from which you're supposed to choose your answer.

But we can write our own.

When will the distance traveled by the 1st car = the distance traveled by the 2nd car?

55 miles + (55 mph)x = (60 mph)x

solve this for x:  55 miles = (60-55)x mph = 5 mph

x=11 hours

The two cars are the same distance from the starting point after 11 hours.
You might be interested in
Find the quotient of -88 and 11
N76 [4]
-8...........................................................................................
3 0
3 years ago
ASAP HELP WILL GIVE BRAINLY
timurjin [86]

Answer:

7x - 4y = -4\\(7x - 7x) - 4y = -7x - 4\\-4y = -7x - 4\\\frac{-4}{-4}y = \frac{-7x - 4}{-4}\\y = \frac{7}{4}x + 1\\m = \frac{7}{4}\\b = 1

m = slope

b = y-intercept

Step-by-step explanation:

3 0
3 years ago
What is the simplified form of x+8/4-x+5/4?
GaryK [48]

Hzhsususuhhhdhdhhddhdhhdjxxj

7 0
3 years ago
Read 2 more answers
Let z=3+i, <br>then find<br> a. Z²<br>b. |Z| <br>c.<img src="https://tex.z-dn.net/?f=%5Csqrt%7BZ%7D" id="TexFormula1" title="\sq
zysi [14]

Given <em>z</em> = 3 + <em>i</em>, right away we can find

(a) square

<em>z</em> ² = (3 + <em>i </em>)² = 3² + 6<em>i</em> + <em>i</em> ² = 9 + 6<em>i</em> - 1 = 8 + 6<em>i</em>

(b) modulus

|<em>z</em>| = √(3² + 1²) = √(9 + 1) = √10

(d) polar form

First find the argument:

arg(<em>z</em>) = arctan(1/3)

Then

<em>z</em> = |<em>z</em>| exp(<em>i</em> arg(<em>z</em>))

<em>z</em> = √10 exp(<em>i</em> arctan(1/3))

or

<em>z</em> = √10 (cos(arctan(1/3)) + <em>i</em> sin(arctan(1/3))

(c) square root

Any complex number has 2 square roots. Using the polar form from part (d), we have

√<em>z</em> = √(√10) exp(<em>i</em> arctan(1/3) / 2)

and

√<em>z</em> = √(√10) exp(<em>i</em> (arctan(1/3) + 2<em>π</em>) / 2)

Then in standard rectangular form, we have

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right)\right)

and

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right)\right)

We can simplify this further. We know that <em>z</em> lies in the first quadrant, so

0 < arg(<em>z</em>) = arctan(1/3) < <em>π</em>/2

which means

0 < 1/2 arctan(1/3) < <em>π</em>/4

Then both cos(1/2 arctan(1/3)) and sin(1/2 arctan(1/3)) are positive. Using the half-angle identity, we then have

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

and since cos(<em>x</em> + <em>π</em>) = -cos(<em>x</em>) and sin(<em>x</em> + <em>π</em>) = -sin(<em>x</em>),

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

Now, arctan(1/3) is an angle <em>y</em> such that tan(<em>y</em>) = 1/3. In a right triangle satisfying this relation, we would see that cos(<em>y</em>) = 3/√10 and sin(<em>y</em>) = 1/√10. Then

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10+3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10-3\sqrt{10}}{20}}

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

So the two square roots of <em>z</em> are

\boxed{\sqrt z = \sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

and

\boxed{\sqrt z = -\sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

3 0
3 years ago
Read 2 more answers
Look below giving brainliest plz dont answer it incorrect
USPshnik [31]

1 is   D 10,8

2 is B 10, 3

6 0
3 years ago
Read 2 more answers
Other questions:
  • What is another way to show 1/8 + 5/8
    6·2 answers
  • what is the degree of the polynomial below? 4x to the third power + 3x to the second power + 6x+5... A. 0 B. 3 C. 1 D. 2
    11·2 answers
  • 8.<br> f(x) = -0.75x<br> find the inverse function f-1(x) for the given functions f(x)
    13·1 answer
  • 1/2 divided 1/4 Help me​
    13·2 answers
  • According to the Bureau of Transportation, 80.3% of American Airlines flights arrive on time. What is the probability that a ran
    12·1 answer
  • solve the equation for x. show each step of the solution. name the justification for each step of the solution 9/2 (8-x) +36=102
    5·1 answer
  • 8f=64. Solve the equation
    9·2 answers
  • Which decimal is equivalent to 25/6 ?
    6·1 answer
  • Matrices C and D are shown below.<br> What values of a and b will make the equation CD = I true?
    5·2 answers
  • Who can solve this anyone
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!