Answer:
Explanation:
Work, U, is equal to the force times the distance:
U = F · r
Force needed to lift the weight, is equal to the weight: F = W = m · g
so:
U = m · g · r
= 20.4kg · 9.81
· 1.50m
= 35.316 
= 35.316 W
Answer:
The result might require 9 bits to store
Answer:
a) Ef = 0.755
b) length of specimen( Lf )= 72.26mm
diameter at fracture = 9.598 mm
c) max load ( Fmax ) = 52223.24 N
d) Ft = 51874.67 N
Explanation:
a) Determine the true strain at maximum load and true strain at fracture
True strain at maximum load
Df = 9.598 mm
True strain at fracture
Ef = 0.755
b) determine the length of specimen at maximum load and diameter at fracture
Length of specimen at max load
Lf = 72.26 mm
Diameter at fracture
= 9.598 mm
c) Determine max load force
Fmax = 52223.24 N
d) Determine Load ( F ) on the specimen when a true strain et = 0.25 is applied during tension test
F = 51874.67 N
attached below is a detailed solution of the question above
57.5 m/s
I did 2.3/0.04
I’m not sure if it’s correct though