Answer:
modulus =3.97X10^6 Ib/in^2, Poisson's ratio = 0.048
Explanation:
Modulus is the ratio of tensile stress to tensile strain
Poisson's ratio is the ratio of transverse contraction strain to longitudinal extension strain within the direction of the stretching force
And contraction occur from 0.6 in x 0.6 in to 0.599 in x 0.599 in while 2 in extended to 2.007, with extension of 0.007 in
Answer:
M = 281.25 lb*ft
Explanation:
Given
W<em>man</em> = 150 lb
Weight per linear foot of the boat: q = 3 lb/ft
L = 15.00 m
M<em>max</em> = ?
Initially, we have to calculate the Buoyant Force per linear foot (due to the water exerts a uniform distributed load upward on the bottom of the boat):
∑ Fy = 0 (+↑) ⇒ q'*L - W - q*L = 0
⇒ q' = (W + q*L) / L
⇒ q' = (150 lb + 3 lb/ft*15 ft) / 15 ft
⇒ q' = 13 lb/ft (+↑)
The free body diagram of the boat is shown in the pic.
Then, we apply the following equation
q(x) = (13 - 3) = 10 (+↑)
V(x) = ∫q(x) dx = ∫10 dx = 10x (0 ≤ x ≤ 7.5)
M(x) = ∫10x dx = 5x² (0 ≤ x ≤ 7.5)
The maximum internal bending moment occurs when x = 7.5 ft
then
M(7.5) = 5(7.5)² = 281.25 lb*ft
OSHA inspections are generally unannounced. In fact, except in four exceptional circumstances when advance notice may be given.
It is a criminal offense for any person to give unauthorized advance notice of an OSHA inspection.
Answer:
True ❤️
-Solid by solid can make Cylindrical wire doubles Strengths in tension