Density = (mass) divided by (volume)
We know the mass (2.5 g). We need to find the volume.
The penny is a very short cylinder.
The volume of a cylinder is (π · radius² · height).
The penny's radius is 1/2 of its diameter = 9.775 mm.
The 'height' of the cylinder is the penny's thickness = 1.55 mm.
Volume = (π) (9.775 mm)² (1.55 mm)
= (π) (95.55 mm²) (1.55 mm)
= (π) (148.1 mm³)
= 465.3 mm³
We know the volume now. So we could state the density of the penny,
but nobody will understand what we have. Here it is:
mass/volume = 2.5 g / 465.3 mm³ = 0.0054 g/mm³ .
Nobody every talks about density in units of ' gram/(millimeter)³ ' .
It's always ' gram / (centimeter)³ '.
So we have to convert our number for the volume.
(0.0054 g/mm³) x (10 mm / cm)³
= (0.0054 x 1,000) g/cm³
= 5.37 g/cm³ .
This isn't actually very close to what the US mint says for the density
of a penny, but it's in a much better ball park than 0.0054 was.
Answer:
a) From definition a transverse wave is which one where the elements moves perpendicular to the direction of the wave. For example is a wave is moving from the left to the right the elements would be wibrating or moving upward or downward.
We have a lot examples for a transverse wave. For example water waves, strings on the musical instruments , light and radio waves.
b) We can identify a transverse wave if the particles are displaced perpendicular to the direction of the wave. Usually these types of wave occur in elastic solids. And we can identify it when we see a pattern perpendicular between the wave direction and the particles motion. In simple words we need to see that the wave is moving down and up.
Explanation:
Part a
From definition a transverse wave is which one where the elements moves perpendicular to the direction of the wave. For example is a wave is moving from the left to the right the elements would be wibrating or moving upward or downward.
We have a lot examples for a transverse wave. For example water waves, strings on the musical instruments , light and radio waves.
Part b
We can identify a transverse wave if the particles are displaced perpendicular to the direction of the wave. Usually these types of wave occur in elastic solids. And we can identify it when we see a pattern perpendicular between the wave direction and the particles motion. In simple words we need to see that the wave is moving down and up.
Speed is defined as the distance over time. So in measuring the speed of a car, the most manual thing that we can do besides using a speedometer is to measure a certain distance then measure the time at which the car passes that distance then divide the distance over the time. Then determine the speed limit.
The force of gravity on earth is towards the center of it
In the downward direction