As the roller coaster speeds up on the way down the hill, the potential energy of roller coaster will be converted to kinetic energy.
<h3>
What is Conservation of Energy ?</h3>
Conservation of energy state that energy is neither created nor destroy, they can only be transformed from one form to another. Energy of and object can transform from Potential energy to kinetic energy and vice versa
Given that at the top of a hill a roller coaster has gravitational potential energy due to its position. What will happen to this potential energy as the roller coaster speeds up on the way down the hill is that the potential energy to the roller coaster will start decreasing while the kinetic energy will start to increase.
The total energy of the roller coaster will be constant because of conservation of energy. As the roller coaster speeds up on the way down the hill, the potential energy will eventually reduce to zero where the total energy of the as the roller coaster will be equal to maximum kinetic energy.
Therefore, as the roller coaster speeds up on the way down the hill, the potential energy of roller coaster will be converted to kinetic energy.
Learn more about Energy here: brainly.com/question/25959744
#SPJ1
Objects repel and attract because of a thing called electrostatic attraction. When objects have the same charge (positive or negative), then they will repel, and if they have opposite charges then they will attract
I remember c/d. That's not a problem. But if you want 'c', you'll have to give me 'd'.
Answer:
44.1 m
Explanation:
<u>Given:</u>
= speed of sound in air = 343 m/s
= speed of sound in the rod = 
= times interval between the hearing the sound twice = 0.12 s
<u>Assumptions:</u>
= length of the rod
= time taken by the sound to travel through the rod
= time taken by the sound to travel to through air to the same point = 
We know that the distance traveled by the sound in a particular medium is equal to the product of the speed of sound in that medium and the time taken.
For traveling sound through the rod, we have
..........eqn(1)
For traveling sound through the air to the women ear for traveling the same distance, we have

Hence, the length of the rod is 44.1 m.