Formula units in 450 g of
is 1.93 × 10²⁴ formula units.
<u>Explanation:</u>
First we have to find the number of moles in the given mass by dividing the mass by its molar mass as,

Now, we have to multiply the number of moles of Na₂SO₄ by the Avogadro's number, 6.022 × 10²³ formula units/mol, so we will get the number of formula units present in the given mass of the compound.
3.2 mol × 6.022 × 10²³ = 1.93 × 10²⁴ formula units.
So, 1.93 × 10²⁴ formula units is present in 450g of Na₂SO₄.
The correct option is D.
The hydrogen atoms that are attached to the nitrogen atom in the ammonia molecule are capable of forming hydrogen bond. The hydrogen bond that exist in the ammonia molecule is the reason why it shows higher boiling point compare to the other hydrides. Hydrogen bond occur in ammonia because ammonia is one of the most electronegative elements.
Answer:
41 mL
Explanation:
Given data:
Milliliter of HCl required = ?
Molarity of HCl solution = 4.25 M
Mass of CaCO₃ = 8.75 g
Solution:
Chemical equation:
2HCl + CaCO₃ → CaCl₂ + CO₂ + H₂O
Number of moles of CaCO₃:
Number of moles = mass/molar mass
Number of moles = 8.75 g / 100.1 g/mol
Number of moles = 0.087 g /mol
Now we will compare the moles of CaCO₃ with HCl.
CaCO₃ : HCl
1 : 2
0.087 : 2/1×0.087 = 0.174 mol
Volume of HCl:
Molarity = number of moles / volume in L
4.25 M = 0.174 mol / volume in L
Volume in L = 0.174 mol /4.25 M
Volume in L = 0.041 L
Volume in mL:
0.041 L×1000 mL/ 1L
41 mL
Answer:
The answer is C. The high solvation energy for LI+
Explanation:
LiF has lower solubility because of the high solvation energy of Li+ ion. This is due to the smaller size and very big charge compared to Cs+ ion which has a bigger size and solvent molecules easily surround it.
Solvation energy is simply the amount energy that is required to make a solute dissolve in a solvent.