Answer:
2NaBr + I2 Right arrow. 2NaI + Br2
2AgNO3 + Ni Right arrow. Ni(NO3)2 + 2Ag
Explanation:
The activity or electrochemical series is an arrangement of elements according to their order
of reactivity.
If we look at the reactions, one thing that we must note is that the reactions that can occur are those in which an element that is higher in the series displaces another element that is lower in the series.
Br is higher in the electrochemical series than I so it can displace it. Ni is higher than Ag in the electrochemical series hence it can displace it.
Answer:
This is a synthesis reaction.
Explanation:
This is because nothing is being swapped out, reactants are being combined and then form a product.
The heat lost by copper(ii) sulfate is equal to heat absorbed by water since the total energy in the system remains constant according to the law of conservation of energy.
<h3>How can the number of moles be determined?</h3>
The number of moles of a substance is determined using the formula below:
- Number of moles = mass/molar mass
Assuming the mass of copper(ii) sulfate used is <em>Mc</em>, number of moles of copper(ii) sulfate used is:
- Moles of copper(ii) sulfate = <em>Mc</em>/159.60 moles
The heat absorbed by water is calculated using the formula below:
- Quantity of Heat, H = mass × specific heat capacity × temperature change
mass of water <em>=</em><em> </em> 10 g
Let temperature change be <em>Tc</em>
Heat<em> </em>absorbed<em> </em>by water = 10 × 4.186 × Tc = 41
86Tc
The change in internal energy, ΔU of copper(ii) sulfate, is given as:
where:
Q = heat absorbed by water
W = work done by or on the system
The enthalpy of the reaction is given as:
- ΔH= energy released or absorbed/moles of copper (ii) sulfate
Therefore, according to the law of conservation of energy, the total energy in the system remains constant.
Learn more about internal energy change at: brainly.com/question/14126477
first you divide them together and get an answer of 10 then you times it by 5 and your answer is 50 ml