Answer: The initial temperature of the iron was 
Explanation:

As we know that,

.................(1)
where,
q = heat absorbed or released
= mass of iron = 360 g
= mass of water = 750 g
= final temperature = 
= temperature of iron = ?
= temperature of water = 
= specific heat of iron = 
= specific heat of water= 
Now put all the given values in equation (1), we get
![-360\times 0.450\times (46.7-x)=[750\times 4.184\times (46.7-22.5)]](https://tex.z-dn.net/?f=-360%5Ctimes%200.450%5Ctimes%20%2846.7-x%29%3D%5B750%5Ctimes%204.184%5Ctimes%20%2846.7-22.5%29%5D)

Therefore, the initial temperature of the iron was 
TLDR: The kinetic energy is determined to be zero.
Kinetic energy is energy of motion; when an object is moving (i.e. it has speed or velocity), it has some amount of kinetic energy. The equation itself looks like so:
KE=1/2(m)(v)^2,
where "m" represents the mass of the object and "v" represents the objects speed or velocity. In this example, the ball has stopped, meaning it has no speed/velocity. This means that the final kinetic energy is determined to be zero or none, due to the lack of motion. Mathematically, you can see this by substituting "0" in for "v" (the ball is stopped):
KE=1/2(m)(v)^2
KE=1/2(m)(0)^2
KE=1/2(m)*0
KE=1/2*0
KE=0 J,
or zero kinetic energy.
Hope this helps! :)
Answer:
We deduce that the correct option is option c: critical period
Explanation:
Hello!
Let's solve this!
The imprint is the learning that occurs in early ages, the example of the duckling is used, which follows anyone in early periods.
This is called the critical period.
We deduce that the correct option is option c: critical period
Answer:
D I'm pretty sure.
Explanation:
I'm taking the quiz right now and D makes the most sense.