<h2>
Option B is the correct answer.</h2>
Explanation:
Period of a spring mass arrangement is given by

where m is mass and k is spring constant.
So period of spring mass arrangement is independent of amplitude of motion.
Here amplitude changes from A to 2A.
Period for amplitude A is given by T.
Since period remains same for amplitude 2A also, the period is T.
Option B is the correct answer.
Answer: The correct answer is option b.
Explanation: We are given that the rocket is at rest initially final velocity is 445m/s.
The acceleration of the rocket is 
To calculate the distance of rocket, we use third equation of motion, which is:

where, v = final velocity = 445m/s
u = initial velocity = 0m/s
a = acceleration = 
s = distance = ? m
Putting values in above equation, we get:

temperature rises ? specific heat capacity etc ...
The Balmer light series comes under the visible light.
<u>Explanation:</u>
The transition of electrons from higher to energy level with 2 as principal quantum number results in the spectral emission lines of hydrogen atom and this series of lines are known as Balmer series.
Mostly, these lines has the wavelength of more than 400 nm but lesser than 700 nm. Generally of the four categories namely, 410, 434, 486, 656 nm which comes under the type of visible light. So, it can be concluded that the Balmer series light falls under visible light.
In astronomy, Balmer lines occur in various stellar (celestial or astronomical) objects due to the higher content of hydrogen in the universe. Therefore, they are commonly seen and relatively strong when compared to other element lines.
Note: nm is nanometer (one billionth of a meter in length)
Answer:
48.26 m
Explanation:
time to goes up (till stop for a while in the air - maximum height)
vt = vo + a t
0 = 15 + g . t
0 = 15 + (-9.8) . t
9.8t = 15
t = 1.531 s
so the time left to goes down is
4.0 - 1.531 = 2.469 s
height from the top of building can find it by using
vo =√(2gh)
15 = √(2)(9.8).h
15² = 19.6h
h = 225/19.6 = 11.48 m
so the distance of maximum height to the ground is
t = √(2H/g)
2.469 = √(2H/9.8)
2.469² = 2H/9.8
6.096 = 2H/9.8
2H = 6.096 x 9.8 = 59.74 m
so the vertical distance of the building (or the building height's is)
H - h = 59.74 - 11.48 = 48.26 m