30000 btuh /3413 btuh/kw. = 8.8 kw
8.8 kw/.746 kw/hp = 11.8 hp if COP is 1
11.8/3 hp (COP coefficient of performance) = 3.99 COP
>>>So yes a 3.0 hp compressor with a nominal COP of 4 will handle the 30,000 btuh load.
3.2 to 4.5 is expected COP range for an air cooled heat pump or a/c unit.
Answer:
The acceleration of an object depends directly upon the net force acting upon the object, and inversely upon the mass of the object. As the force acting upon an object is increased, the acceleration of the object is increased. As the mass of an object is increased, the acceleration of the object is decreased.
Explanation:
hope it helps pls give me brainless
Answer:
96%
Explanation:
To find the values of the motor efficiency you use the following formula:

P_o: output power = 864J/0.5min=864J/30s=28.8W
P_i: input power = I*V = (3A)(12V) = 36W
By replacing this values you obtain:

hence, the motor efficiency is about 96%
traslation:
Pentru a găsi valorile eficienței motorului, utilizați următoarea formulă:
P_o: putere de ieșire = 864J / 0.5min = 864J / 30s = 28.8W
P_i: putere de intrare = I * V = (3A) (12V) = 36W
Înlocuind aceste valori obțineți:
prin urmare, eficiența motorului este de aproximativ 96%
Answer:
170 W
Explanation:
Applying
P = VI.................... Equation 1
Where P = Power generated in watt, V = Voltage supplied to the circuit, I = Current running through the circuit.
From the question,
Given: V = 17 V, I = 10 A
Substitute these values into equation 1
P = (17×10)
P = 170 Watt.
Hence the power generated is 170 W.
The right option is A. 170 W
Answer:
<h2>39.2 m</h2>
Explanation:
The height of the hill side can be found by using the formula

p is the potential energy
m is the mass
From the question we have

We have the final answer as
<h3>39.2 m</h3>
Hope this helps you