1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
VikaD [51]
3 years ago
10

A child weighing 200 N is being held back in a swing by a horizontal force of 125 N, as shown in the image. What is the tension

T in the rope that supports the swing in units of Newtons? Note: Please enter only the numerical answer. If you include any units in your answer, your answer will be counted as incorrect. T F= 125 N Weight = 200 N​
Physics
1 answer:
mixer [17]3 years ago
8 0

Answer:

75

Explanation:

i am not sure but if 200N boy is being held back then the force that's holding him back must be equal to or greater than his weight. if 125N is already exerted then the tension will be:

T=200-125

= 75

You might be interested in
URGENTTT PLEASE HELPPPP. You put m1 = 1 kg of ice cooled to -20°C into mass m2 = 1 kg of water at 2°C. Both are in a thermally i
STatiana [176]

Answer:

Explanation:

heat lost by water will be used to increase the temperature of  ice

heat gained by ice

= mass x specific heat  x rise in temperature

1 x 2090 x t

heat lost by water in cooling to 0° C

= mcΔt  where m is mass of water , s is specific heat of water and Δt is fall in temperature .

= 1 x 2 x 4186  

8372

heat lost = heat gained

1 x 2090 x t  = 8372

t = 4°C

There will be a rise of  4 degree in the temperature of ice.  

 

5 0
2 years ago
A container contains 200g of water at initial temperature of 30°C. An iron nail of mass 200g at temperature of 50°C is immersed
d1i1m1o1n [39]

Answer:

Assuming there is no heat loss to the surrounding.

Heat lost by iron equals heat gained by water.

0.2(450)(50-x)=0.2(4200)(x-30)

x=31.94 °C

Explanation:

4 0
3 years ago
Read 2 more answers
A car moving at a speed of 36 km/h reaches the foot of a smooth
boyakko [2]

Answer:

d = 10.2 m

Explanation:

When the car travels up the inclined plane, its kinetic energy will be used to do the work in climbing up. So according to the law of conservation of energy, we can write that:

Kinetic\ Energy\ of\ the \ Car = Work\ Done\ while\ moving\ up\ the\ plane\\\frac{1}{2}mv^{2} = Fd

where,

m = mass of car

v = speed of car at the start of plane = (36 km/h)(1000 m/1 km)(1 h/3600 s)

v = 10 m/s

F = force on the car in direction of inclination = W Sin θ

W = weight of car = mg

θ = Angle of inclinition = 30°

d = distance covered up the ramp = ?

Therefore,

\frac{1}{2}mv^{2} = mgdSin\theta\\\frac{1}{2}v^{2} = gdSin\theta\\\frac{1}{2}(10\ m/s)^{2} = d(9.81\ m/s^{2}) Sin\ 30^{0}

<u>d = 10.2 m</u>

4 0
2 years ago
If air resistance acts on a falling object will all of its potential energy be converted into kinetic energy?
Mademuasel [1]

Answer:

No, some energy will be dissipated energy due to work of air resistance.

6 0
2 years ago
A first order reaction, A -&gt; products, has a rate reaction of .00250 Ms-1 when [A] = . 484 M. (a) What is the rate constant,
tamaranim1 [39]

Answer: a)  The rate constant, k, for this reaction is 0.00516s^{-1}

b) No t_{\frac{1}{2}} does not depend on concentration.

Explanation:

Rate law says that rate of a reaction is directly proportional to the concentration of the reactants each raised to a stoichiometric coefficient determined experimentally called as order.

A\rightarrow products

Given: Order with respect to A = 1

Thus rate law is:

a) Rate=k[A]^1

k= rate constant

0.00250=k[0.484]^1

k=0.00516s^{-1}

The rate constant, k, for this reaction is 0.00516s^{-1}

b) Expression for rate law for first order kinetics is given by:

t=\frac{2.303}{k}\log\frac{a}{a-x}

where,

k = rate constant  

t = age of sample

a = let initial amount of the reactant  

a - x = amount left after decay process  

Half life is the amount of time taken by a radioactive material to decay to half of its original value.

t_{\frac{1}{2}}=\frac{2.303}{k}\log\frac{100}{50}

t_{\frac{1}{2}}=\frac{0.69}{k}

Thus t_{\frac{1}{2}} does not depend on concentration.

8 0
2 years ago
Other questions:
  • A system of pulleys is used to raise a load of bricks that weighs 1,700 newtons. The force applied to the pulley is 340 newtons.
    9·2 answers
  • It may seem strange that the selected velocity does not depend on either the mass or the charge of the particle. (For example, w
    7·1 answer
  • Which phrase describes a scientific law?
    15·2 answers
  • Polarized sunglasses work by A. blocking light waves that vibrate in one plane. B. gradually refracting light as it passes throu
    10·2 answers
  • Two point charges are fixed on the y axis: a negative point charge q1 = -34 μC at y1 = +0.18 m and a positive point charge q2 ar
    10·1 answer
  • Which of the following is a legal requirement for boat operation?
    13·1 answer
  • How do you transfer kinetic energy to electrical energy using a generator system
    11·2 answers
  • a solid sphere and a hollow sphere with equal mass are rotated about an axis through their centers. both spheres experience equa
    9·1 answer
  • A boy takes his dog for a walk. The dog pulls with 30N of force to the right and the boy pulls backward with 18 N of force.
    6·1 answer
  • A 230 kg steel crate is being pushed along a cement floor. The force of friction is 480 N to the left and the applied force is 1
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!