Answer:
a. by moving the book without acceleration and keeping the height of the book constant
Explanation:
FOR CONSTANT KINETIC ENERGY:
The kinetic energy of a body depends upon its speed according to its formula:
ΔK.E = (1/2)mΔv²
So, for Δv = 0 m/s
ΔK.E = 0 J
So, for keeping kinetic energy constant, the books must be moved at constant speed without acceleration.
FOR CONSTANT POTENTIAL ENERGY:
The potential energy of a body depends upon its height according to its formula:
ΔP.E = mgΔh
So, for Δh = 0 m/s
ΔP.E = 0 J
So, for keeping potential energy constant, the books must be moved at constant height.
So, the correct option is:
<u>a. by moving the book without acceleration and keeping the height of the book constant</u>
Answer:
what do you mean by that.
Answer:
The answer to your question is:
a) t = 3.81 s
b) vf = 37.4 m/s
Explanation:
Data
height = 71.3 m = 234 feet
t = 0 m/s
vf = ?
vo = 0 m/s
Formula
h = vot + 1/2gt²
vf = vo + gt
Process
a)
h = vot + 1/2gt²
71.3 = 0t + 1/2(9.81)t²
2(71.3) = 9,81t²
t² = 2(71.3)/9.81
t² = 14.53
t = 3.81 s
b)
vf = 0 + (9.81)(3.81)
vf = 37.4 m/s
It might be 4.0 or 2.22344 seconds as velocity speed
Answer:
764728497693575177015915715716245378tr7138
Explanation: