Answer:
The coefficient of kinetic friction between the puck and the ice is 0.11
Explanation:
Given;
initial speed, u = 9.3 m/s
sliding distance, S = 42 m
From equation of motion we determine the acceleration;
v² = u² + 2as
0 = (9.3)² + (2x42)a
- 84a = 86.49
a = -86.49/84
|a| = 1.0296
= ma
where;
Fk is the frictional force
μk is the coefficient of kinetic friction
N is the normal reaction = mg
μkmg = ma
μkg = a
μk = a/g
where;
g is the gravitational constant = 9.8 m/s²
μk = a/g
μk = 1.0296/9.8
μk = 0.11
Therefore, the coefficient of kinetic friction between the puck and the ice is 0.11
Answer:
451.13 J/kg.°C
Explanation:
Applying,
Q = cm(t₂-t₁)............... Equation 1
Where Q = Heat, c = specific heat capacity of iron, m = mass of iron, t₂= Final temperature, t₁ = initial temperature.
Make c the subject of the equation
c = Q/m(t₂-t₁).............. Equation 2
From the question,
Given: Q = 1500 J, m = 133 g = 0.113 kg, t₁ = 20 °C, t₂ = 45 °C
Substitute these values into equation 2
c = 1500/[0.133(45-20)]
c = 1500/(0.133×25)
c = 1500/3.325
c = 451.13 J/kg.°C
Answer:
<em>Magnitude of the Frictional force is 200 N</em>
Explanation:
The frictional force is the force that tries to oppose relative motion between two surfaces that are contacting. The coefficient of static friction is the coefficient of friction of a body that is not moving.
Newton's third law of motion states that action and reaction forces are equal and opposite. So the frictional force felt on the filing cabinet will be equal to the applied force pulling the cabinet.
Frictional force = Force applied
Force applied = 200 N
Therefore, the magnitude of the friction force on the filing cabinet is 200 N
Answer:
The correct answer is
Explanation:
Character 1: Why are these comic books so hard to read? Can u read them?
Character 2: No it's easy to read Tigger. It's because you are an animal an I am a human being. U don't know how to read.
Hope this helps....
Have a nice day!!!!
Answer:
2.72*10-3 Joules
Explanation:
From Newton's second law of motion
F=ma

given


the angular velocity is


