1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mekhanik [1.2K]
3 years ago
8

Two uniform solid cylinders, each rotating about its central (longitudinal) axis, have the same mass of 2.88 kg and rotate with

the same angular speed of 257 rad/s, but they differ in radius. What is the rotational kinetic energy of (a) the smaller cylinder, of radius 0.319 m, and (b) the larger cylinder, of radius 0.605 m
Physics
1 answer:
Tanya [424]3 years ago
8 0

Answer:

(a) K_{small}=4839.3J

(b) K_{larger}=17406.4J

Explanation:

Given data

The angular velocity of two cylinders ω=257 rad/s

The mass of the two cylinders m=2.88 kg

The radius of small cylinder r₁=0.319 m

The radius of larger cylinder r₂=0.605 m

For Part (a)

The rotational kinetic energy of the cylinder is given by:

K=\frac{1}{2}Iw^2

Where I is rotational of inertia of solid cylinder about its central axis.

So

K=\frac{1}{2}Iw^2\\ K=\frac{1}{2}(1/2mr^2)w^2

Substitute the given values

So

K_{small}=\frac{1}{4}(2.88kg)(0.319)^2(257rad/s)^2 \\K_{small}=4839.3J

For Part (b)

K=\frac{1}{2}Iw^2\\ K=\frac{1}{2}(1/2mr_{2}^2)w^2

Substitute the given values

K_{larger}=\frac{1}{4}mr_{2}^2w^2\\ K_{larger}=\frac{1}{4}(2.88kg)(0.605m)^2(257rad/s)^2\\ K_{larger}=17406.4J

You might be interested in
According to a rule-of-thumb. every five seconds between a lightning flash and the following thunder gives the distance to the f
Bond [772]

Answer:

S_{s}=300 m/s

The rule for kilometers is that every three seconds between a lightning flash and the following thunder gives the distance to the flash in kilometers.

Explanation:

In order to use the rule of thumb to find the speed of sound in meters per second, we need to use some conversion ratios. We know there is 1 mile per every 5 seconds after the lightning is seen. We also know that there are 5280ft in 1 mile and we also know that there are 0.3048m in 1ft. This is enough information to solve this problem. We set our conversion ratios like this:

\frac{1mi}{5s}*\frac{5280ft}{1mi}*\frac{0.3048m}{1ft}=321.87m/s

notice how the ratios were written in such a way that the units got cancelled when calculating them. Notice that in one ratio the miles were on the numerator of the fraction while on the other they were on the denominator, which allows us to cancel them. The same happened with the feet.

The problem asks us to express the answer to one significant figure so the speed of sound rounds to 300m/s.

For the second part of the problem we need to use conversions again. This time we will write our ratios backwards and take into account that there are 1000m to 1 km, so we get:

\frac{5s}{1mi}*\frac{1mi}{5280ft}*\frac{1ft}{0.3048m}*\frac{1000m}{1km}=3.11s/km

This means that for every 3.11s there will be a distance of 1km from the place where the lightning stroke. Since this is a rule of thumb, we round to the nearest integer for the calculations to be made easily, so the rule goes like this:

The rule for kilometers is that every three seconds between a lightning flash and the following thunder gives the distance to the flash in kilometers.

3 0
3 years ago
Which of the following is most useful to determine how much energy is being used by a circuit in a given amount of time?
user100 [1]

Answer:

The answer is A.

Explanation:

5 0
3 years ago
How long does it take a car to cross a 20m bridge if it starts from rest and accelerates at 5 m/s^2?
polet [3.4K]

The correct answer is 2.8s

5 0
4 years ago
3. Consider a locomotive and the rest of a freight train to be a single object. Suppose the locomotive is pulling the train up a
Nonamiya [84]

Answer:

Action - Pulling up the train.

Reaction - Friction on the locomotive

Explanation:

Locomotive is pulling the train upwards ,

Which is the action force applied by the locomotive,

As a reaction locomotive will be pulled by the train which is the reaction of pulling

Now, considering it as a action on locomotive , friction force will act on it as a reaction upwards which will result to move it upwards.

For train action is pulling up by locomotive and reaction will be friction acting on it downwards.

6 0
3 years ago
Rank these significant figures numbers from the least to the most
Mumz [18]

Answer:

0.006<357<700.003<6010<9256.0<9520.00

8 0
3 years ago
Other questions:
  • Which three quantities can be used to calculate acceleration?
    5·1 answer
  • A campus bird spots a member of an opposing football team in an amusement park. The football player is on a ride where he goes a
    13·1 answer
  • Which is an example of something heated by conduction?
    5·2 answers
  • Plz I need help !!!!!!!
    7·2 answers
  • A person standing at the edge of a seaside cliff kicks a stone horizontally over the edge with a speed of 18 m/s. The cliff is 5
    11·1 answer
  • Which statement about a pair of units is true?
    14·1 answer
  • Question 6 of 15
    15·2 answers
  • PLZ HELP ON #22-26!!!! <br><br>Please explain why and how you got your answer.
    13·1 answer
  • What would be the effect of the uneven distribution of
    5·2 answers
  • When a 3.0 N weight is attached to a vertical coil spring, it stretches 5.0 cm. What weight would be required to stretch the spr
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!