It all depends on the SIZE of the balloon.
If the balloon is made of really tough rubber, and it holds the helium in the same volume as the solid iron block, then the buoyant force of the atmosphere is the same for both objects.
But if the balloon is just some flimsy stuff, and it lets the helium expand to a much bigger volume than the iron block, then the buoyant force on the balloon is greater than the buoyant force on the solid iron block.
In fact, it DOESN'T MATTER what's in the balloon and what's in the block. It doesn't matter whether either one of them is solid, liquid, or gas, and it doesn't matter whether they have the same or different mass.
Whichever one has greater VOLUME has a greater buoyant force of atmosphere acting on it.
The answer is 167 pounds.
Answer and Explanation:
In optics, a CoC(Circle of Confusion) is defined the minimum cross section of a paraxial bundle of rays made by a lens which is sphero-cylindrical type and can be viewed as an optical spot, which do not converge perfectly at the focus while a point source is being imaged due to spherical aberration.
The Circle of Confusion is also referred to as circle of indistinctness or a blur spot
Vi=12m/s Vf=16m/s t=8s a=? a=Vf-Vi/t=16-12/8=4/8=1/2 a=0.5m/s^2