Answer:
Explanation:
Considering Work done by friction is asked
Given
mass of block 
force 
inclination 
block is displaced by 
coefficient of kinetic friction 
Friction force 
Normal reaction 

Friction Force 
Work done by friction force

Answer:
(a) 7.315 x 10^(-14) N
(b) - 7.315 x 10^(-14) N
Explanation:
As you referred at the final remark, the electron and proton undergo a magnetic force of same magnitude but opposite direction. Using the definition of magnetic force, a cross product must be done. One technique is either calculate the magnitude of the velocity and magnetic field and multiplying by sin (90°), but it is necessary to assure both vectors are perpendicular between each other ( which is not the case) or do directly the cross product dealing with a determinant (which is the most convenient approach), thus,
(a) The electron has a velocity defined as: ![\overrightarrow{v}=(2.4x10^{6} i + 3.6x10^{6} j) \frac{[m]}{[s]}\\\\](https://tex.z-dn.net/?f=%5Coverrightarrow%7Bv%7D%3D%282.4x10%5E%7B6%7D%20i%20%2B%203.6x10%5E%7B6%7D%20j%29%20%5Cfrac%7B%5Bm%5D%7D%7B%5Bs%5D%7D%5C%5C%5C%5C)
In respect to the magnetic field; ![\overrightarrow{B}=(0.027 i - 0.15 j) [T]](https://tex.z-dn.net/?f=%5Coverrightarrow%7BB%7D%3D%280.027%20i%20-%200.15%20j%29%20%5BT%5D)
The magnetic force can be written as;
![\overrightarrow{F} = q(\overrightarrow{v} x \overrightarrow{B})\\ \\\\\overrightarrow{F}= q \left[\begin{array}{ccc}i&j&k\\2.4x10^{6}&3.6x10^{6}&0\\0.027&-0.15&0\end{array}\right]](https://tex.z-dn.net/?f=%5Coverrightarrow%7BF%7D%20%3D%20q%28%5Coverrightarrow%7Bv%7D%20x%20%5Coverrightarrow%7BB%7D%29%5C%5C%20%5C%5C%5C%5C%5Coverrightarrow%7BF%7D%3D%20q%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5C2.4x10%5E%7B6%7D%263.6x10%5E%7B6%7D%260%5C%5C0.027%26-0.15%260%5Cend%7Barray%7D%5Cright%5D)
Bear in mind
thus,
![\overrightarrow{F}= q \left[\begin{array}{ccc}i&j&k\\2.4x10^{6}&3.6x10^{6}&0\\0.027&-0.15&0\end{array}\right]\\\\\\\overrightarrow{F}= q(2.4x10^{6}* (-0.15)- (0.027*3.6x10^{6}))\\\\\\\overrightarrow{F}= -1.6021x10^{-19} [C](-457200) [T]\frac{m}{s}\\\\\overrightarrow{F}=(7.3152x10^{-14}) k [\frac{N*m/s}{C*m/s}]\\\\|F|= \sqrt{ (7.3152x10^{-14})^{2}[N]^2 *k^{2}}\\\\F=7.3152x10^{-14} [N]](https://tex.z-dn.net/?f=%5Coverrightarrow%7BF%7D%3D%20q%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5C2.4x10%5E%7B6%7D%263.6x10%5E%7B6%7D%260%5C%5C0.027%26-0.15%260%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%5C%5C%5Coverrightarrow%7BF%7D%3D%20q%282.4x10%5E%7B6%7D%2A%20%28-0.15%29-%20%280.027%2A3.6x10%5E%7B6%7D%29%29%5C%5C%5C%5C%5C%5C%5Coverrightarrow%7BF%7D%3D%20-1.6021x10%5E%7B-19%7D%20%5BC%5D%28-457200%29%20%5BT%5D%5Cfrac%7Bm%7D%7Bs%7D%5C%5C%5C%5C%5Coverrightarrow%7BF%7D%3D%287.3152x10%5E%7B-14%7D%29%20k%20%5B%5Cfrac%7BN%2Am%2Fs%7D%7BC%2Am%2Fs%7D%5D%5C%5C%5C%5C%7CF%7C%3D%20%5Csqrt%7B%20%287.3152x10%5E%7B-14%7D%29%5E%7B2%7D%5BN%5D%5E2%20%2Ak%5E%7B2%7D%7D%5C%5C%5C%5CF%3D7.3152x10%5E%7B-14%7D%20%5BN%5D)
Note: The cross product is operated as a determinant. Likewise, the product of the unit vector k is squared and that is operated as dot product whose value is equal to one, i.e, 
(b) Considering the proton charge has the same magnitude as electron does, but the sign is positive, thus
![\overrightarrow{F}= q \left[\begin{array}{ccc}i&j&k\\2.4x10^{6}&3.6x10^{6}&0\\0.027&-0.15&0\end{array}\right]\\\\\\\overrightarrow{F}= q(2.4x10^{6}* (-0.15)- (0.027*3.6x10^{6}))\\\\\\\overrightarrow{F}= 1.6021x10^{-19} [C](-457200) [T]\frac{m}{s}\\\\\overrightarrow{F}=(-7.3152x10^{-14}) k [\frac{N*m/s}{C*m/s}]\\\\|F|= \sqrt{ (-7.3152x10^{-14})^{2}[N]^2 *k^{2}}\\\\F=-7.3152x10^{-14} [N]](https://tex.z-dn.net/?f=%5Coverrightarrow%7BF%7D%3D%20q%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5C2.4x10%5E%7B6%7D%263.6x10%5E%7B6%7D%260%5C%5C0.027%26-0.15%260%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%5C%5C%5Coverrightarrow%7BF%7D%3D%20q%282.4x10%5E%7B6%7D%2A%20%28-0.15%29-%20%280.027%2A3.6x10%5E%7B6%7D%29%29%5C%5C%5C%5C%5C%5C%5Coverrightarrow%7BF%7D%3D%201.6021x10%5E%7B-19%7D%20%5BC%5D%28-457200%29%20%5BT%5D%5Cfrac%7Bm%7D%7Bs%7D%5C%5C%5C%5C%5Coverrightarrow%7BF%7D%3D%28-7.3152x10%5E%7B-14%7D%29%20k%20%5B%5Cfrac%7BN%2Am%2Fs%7D%7BC%2Am%2Fs%7D%5D%5C%5C%5C%5C%7CF%7C%3D%20%5Csqrt%7B%20%28-7.3152x10%5E%7B-14%7D%29%5E%7B2%7D%5BN%5D%5E2%20%2Ak%5E%7B2%7D%7D%5C%5C%5C%5CF%3D-7.3152x10%5E%7B-14%7D%20%5BN%5D)
Note: The cross product is operated as a determinant. Likewise, the product of the unit vector k is squared and that is operated as dot product whose value is equal to one, i.e, 
Final remarks: The cross product was performed in R3 due to the geometrical conditions of the problem.
Two atoms of the same element can have different numbers of protons
false
diff nos neutrons ... isotopes,
diff protons ... diff elements
<span>EP (potential energy) = mgy -> (59)(9.8)(-5) = -2,891
EP + EK (kinetic energy) = 0; but rearranging it for EK makes it EK = -EP, such that EK = 2891 when plugged in.
EK = 0.5mv^2, but can also be v = sqrt(2EK/m).
Plugging that in for sqrt((2 * 2891)/59), we get 9.9 m/s^2 with respect to significant figures.</span>
When sphere A and B are brought in contact and separated, charge on each sphere becomes [2x10^-6 + (-4x10^-6)]/ 2 = -1x10^-6 C.
That is, charge is equally separated and is the average of charges on both spheres. The reason behind equal charge on both spheres after separation is, when they are kept in contact, their potential difference becomes same.