<h3>Answer:</h3>
Molar Mass = 56 g.mol⁻¹
<h3>Explanation:</h3>
Data Given:
Mass = 5.00 μg = 5.0 × 10⁻⁶ g
Number of Molecules = 5.38 × 10¹⁶ Molecules
Step 1: Calculate Moles of 1-Butene:
As we know one mole of any substance contains 6.022 × 10²³ particles (atoms, ions, molecules or formula units). This number is also called as Avogadro's Number.
The relation between Moles, Number of Particles and Avogadro's Number is given as,
Number of Moles = Number of Particles ÷ 6.022 × 10²³
Putting values,
Number of Moles = 5.38 × 10¹⁶ Molecules ÷ 6.022 × 10²³
Number of Moles = 8.93 × 10⁻⁸ Moles
Step 2: Calculate Molar Mass of 1-Butene:
As,
Mole = Mass ÷ M.Mass
Solving for M.Mass,
M.Mass = Mass ÷ Mole
Putting values,
M.Mass = 5.0 × 10⁻⁶ g ÷ 8.93 × 10⁻⁸ mol
M.Mass = 55.99 g.mol⁻¹ ≈ 56 g.mol⁻¹
Answer:
-k slope
The term No is the y intercept(does not mean NO) y-intercept
Explanation:
For a straight line graph, the normal equation could be written as
y = mx + c
Where m is the slope and c is the y intercept.
Writing the equation is the form of y = mx + c gives the following;
lnN = -kt + No
As obtained from the question, t is plotted in the x-axis, while lnN is the plot on the y-axis.
Now, we are asked to obtain the slope and the y-intercept. It can be seen that the slope is the coefficient of the term x in this case t. Hence, our slope is -k.
The y-intercept is the other term which in this case is No
Answer:
6.9768
one gram glucose molecule=1.53
Answer:
72.22 g
Explanation:
975 mL Mercury× 13.5 g/mL = 72.22 g
Answer:
5.71 g
Explanation:
Step 1: Write the balanced equation
2 K + Cl₂ ⇒ 2 KCl
Step 2: Calculate the moles corresponding to 12.0 g of KCl
The molar mass of KCl is 74.55 g/mol.
12.0 g × 1 mol/74.55 g = 0.161 mol
Step 3: Calculate the moles of Cl₂ needed to produce 0.161 moles of KCl
The molar ratio of Cl₂ to KCl is 1:2. The moles of Cl₂ needed are 1/2 × 0.161 mol = 0.0805 mol
Step 4: Calculate the mass corresponding to 0.0805 moles of Cl₂
The molar mass of Cl₂ is 70.91 g/mol.
0.0805 mol × 70.91 g/mol = 5.71 g