Answer:
a) ΔHvap=35.3395 kJ/mol
b) Tb=98.62 °C
Explanation:
Given the reaction:
C₇H₁₆ (l) ⇔ C₇H₁₆ (g)
Kp=P(C₇H₁₆) since the concentration ratio for a pure liquid is equal to 1.
When
T₁=50°C=323.15K ⇒P₁=0.179
T₂=86°C=359.15K ⇒P₂=0.669
The Clasius-Clapeyron equation is:



ΔHvap=35339.5 J/mol=35.3395 KJ/mol
Normal boiling point ⇒ P=1 atm
Hence, we find the normal boiling point where:
T₁=323.15K
P₁=0.179 atm
P₂=1 atm



T₂=371.77 K= 98.62 °C
Answer: Option (b) is the correct answer.
Explanation:
When there are more number of hydroxide ions in a solution then there will be high concentration of
or hydroxide ions. As a result, more will be the strength of base in that particular solution.
A base is strong when it readily dissociate into its ions in the solution. When a base is strong, then it does not matter at what concentration it is dissolved in the solution because despite of its low concentration it will remain a strong base.
Thus, we can conclude that out of the given options, the statement even at low concentrations, a strong base is strong best relates the strength and concentration of a base.