Answer:
The distance the train travels before coming to a (complete) stop = 40/81 km which is approximately 493.83 meters
Explanation:
The initial speed of the train u = 80 km/h = 22 2/9 m/s = 22.
m/s
The magnitude of the constant acceleration with which the train slows, a = 0.5 m/s²
Therefore, we have the following suitable kinematic equation of motion;
v² = u² - 2 × a × s
Where;
v = The final velocity = 0 (The train comes to a stop)
s = The distance the train travels before coming to a stop
Substituting the values gives;
0² = 22.
² - 2 × 0.5 × s
2 × 0.5 × s = 22.
²
s = 22.
²/1 = 493 67/81 m = 40/81 km
The distance the train travels before coming to a (complete) stop = 40/81 km ≈ 493.83 m.
-- Electric field lines DO never cross. <em>(A)
</em>
-- Electric field lines that are close together DO indicate a stronger electric field. <em>(B)
</em>
-- Electric field lines DO not affect the charge that created them. <em>(C)</em>
-- Electric field lines DON'T begin on north poles and end on south poles. North and South "poles" are the way we talk about magnets, not electric charges.
Answer:
Explanation:
Using the below formula
Speed of sound = ( distance between observers) *2/(total time taken)
Now putt the given values ,
time taken = 0.80 sec
distance = 256 m
hence
V of sound= 256*2/0.80
V of sound = 640 m/sec
To solve this problem we will apply the concepts related to the Doppler effect. The Doppler effect is the change in the perceived frequency of any wave movement when the emitter, or focus of waves, and the receiver, or observer, move relative to each other. Mathematically it can be described as,

Here,
= Frequency of Source
= Speed of sound
f = Frequency heard before slowing down
f' = Frequency heard after slowing down
v = Speed of the train before slowing down
So if the speed of the train after slowing down will be v/2, we can do a system equation of 2x2 at the two moments, then,
The first equation is,



Now the second expression will be,



Dividing the two expression we have,

Solving for v, we have,

Therefore the speed of the train before and after slowing down is 22.12m/s
<h2>
Density of the unknown liquid is 771.93 kg/m³</h2>
Explanation:
An empty graduated cylinder weighs 55.26 g
Weight of empty cylinder = 55.26 g = 0.05526 kg
Volume of liquid filled = 48.1 mL = 48.1 x 10⁻⁶ m³
Weight of cylinder plus liquid = 92.39 g = 0.09239 kg
Weight of liquid = 0.09239 - 0.05526
Weight of liquid = 0.03713 kg
We have
Mass = Volume x Density
0.03713 = 48.1 x 10⁻⁶ x Density
Density = 771.93 kg/m³
Density of the unknown liquid is 771.93 kg/m³