The vertical velocity of the projectile upon returning to its original is 17. 74 m/s
<h3>
How to determine the vertical velocity</h3>
Using the formula:
Vertical velocity component , Vy = V * sin(α)
Where
V = initial velocity = 36. 6 m/s
α = angle of projectile = 29°
Substitute into the formula
Vy = 36. 6 * sin ( 29°)
Vy = 36. 6 * 0. 4848
Vy = 17. 74 m/s
Thus, the vertical velocity of the projectile upon returning to its original is 17. 74 m/s
Learn more about vertical velocity here:
brainly.com/question/24949996
#SPJ1
I think its Mercury because it's the closest to the sun.
Answer:
0.546 
Explanation:
From the given information:
The force on a given current-carrying conductor is:

where the length usually in negative (x) direction can be computed as

Now, taking the integral of the force between x = 1.0 m and x = 3.0 m to get the value of the force, we have:



![F = I (9.0) \bigg [\dfrac{x^3}{3} \bigg ] ^3_1 \hat k](https://tex.z-dn.net/?f=F%20%3D%20I%20%20%289.0%29%20%5Cbigg%20%5B%5Cdfrac%7Bx%5E3%7D%7B3%7D%20%5Cbigg%20%5D%20%5E3_1%20%5Chat%20k)
![F = I (9.0) \bigg [\dfrac{3^3}{3} - \dfrac{1^3}{3} \bigg ] \hat k](https://tex.z-dn.net/?f=F%20%3D%20I%20%20%289.0%29%20%5Cbigg%20%5B%5Cdfrac%7B3%5E3%7D%7B3%7D%20-%20%5Cdfrac%7B1%5E3%7D%7B3%7D%20%5Cbigg%20%5D%20%20%5Chat%20k)
where;
current I = 7.0 A
![F = (7.0 \ A) (9.0) \bigg [\dfrac{27}{3} - \dfrac{1}{3} \bigg ] \hat k](https://tex.z-dn.net/?f=F%20%3D%20%287.0%20%5C%20A%29%20%20%289.0%29%20%5Cbigg%20%5B%5Cdfrac%7B27%7D%7B3%7D%20-%20%5Cdfrac%7B1%7D%7B3%7D%20%5Cbigg%20%5D%20%20%5Chat%20k)
![F = (7.0 \ A) (9.0) \bigg [\dfrac{26}{3} \bigg ] \hat k](https://tex.z-dn.net/?f=F%20%3D%20%287.0%20%5C%20A%29%20%20%289.0%29%20%5Cbigg%20%5B%5Cdfrac%7B26%7D%7B3%7D%20%5Cbigg%20%5D%20%20%5Chat%20k)
F = 546 × 10⁻³ T/mT 
F = 0.546 
Answer:
The magnetic field at the center of the solenoid is 2.1 × 10⁻³ T
Explanation:
The magnetic field B at the center of the solenoid is given by
B = μ₀ni where μ₀ = permeability of free space = 4π × 10⁻⁷H/m, n = number of turns per unit length of the solenoid = 1100 turns per meter and i = current in the solenoid = 1.5 A.
So B = μ₀ni
= 4π × 10⁻⁷H/m × 1100 × 1.5 A
= 4π × 10⁻⁷H/m × 1650 A-turns/m
= 20734.5 × 10⁻⁷T
= 2.07345 × 10⁻³ T
≅ 2.1 × 10⁻³ T
So the magnetic field at the center of the solenoid is 2.1 × 10⁻³ T