If the resistance of the Air is ignored, we can use the theory given by Galileo in which he warned that the thermal velocity of a body in free fall was given by

Where
g = Gravitational acceleration
t = time
As we can see the speed of objects in free fall is indifferent to the position that is launched (as long as the resistance of the air is ignored) or its mass.
Both bodies will end with the same thermal speed.
A gyre is a set of currents that form b. a loop. The circulation of gyres are affected by global wind patterns, landmasses, and the planet's rotation. The circulation is also affected by temperature, as warm water goes up and cold water sinks. There are five major gyres in the world: <span>North Atlantic, South Atlantic, Indian, North Pacific, and South Pacific.</span>
Answer:
145 m
Explanation:
Given:
Wavelength (λ) = 2.9 m
we know,
c = f × λ
where,
c = speed of light ; 3.0 x 10⁸ m/s
f = frequency
thus,

substituting the values in the equation we get,

f = 1.03 x 10⁸Hz
Now,
The time period (T) = 
or
T =
= 9.6 x 10⁻⁹ seconds
thus,
the time interval of one pulse = 100T = 9.6 x 10⁻⁷ s
Time between pulses = (100T×10) = 9.6 x 10⁻⁶ s
Now,
For radar to detect the object the pulse must hit the object and come back to the detector.
Hence, the shortest distance will be half the distance travelled by the pulse back and forth.
Distance = speed × time = 3 x 10^8 m/s × 9.6 x 10⁻⁷ s) = 290 m {Back and forth}
Thus, the minimum distance to target =
= 145 m
Answer:
Explanation:
According to Newton's third law, every action has an equal and opposite reaction
so it tells us that the force exerted by the earth on the spacecraft is equal to the force exerted by the spacecraft on the earth. But we do not see the earth moving towards the spacecraft because the inertia of the spacecraft is very less than the inertia of the earth.
Joules is a unit for work which may decomposed into N.m. Work is a quantity which is a product of force (in this case, the woman's weight) and the distance she has traveled.
W = F x d ; d = W / F
Substituting the given,
d = (3.5 x 10^4 J) / (55 kg x 9.8 m/s²) = 64.94 m
Thus, the woman can climb up to 64.94 meters.