1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
galben [10]
3 years ago
11

How much work is done when a barbell is lifted 2.5 meters into the

Physics
1 answer:
ohaa [14]3 years ago
8 0

Answer:

the formula given out a Distance x force you get work done

You might be interested in
When energy is transformed or changed from one form into another, some of the energy will be lost to the environment as?
sasho [114]
Generally it is lost as heat.
7 0
3 years ago
You are on a sled at the top of a hemispherical, snowy hill of radius 13 m. You begin to slide down the hill. How fast are you m
8_murik_8 [283]

Answer:

Explanation:

There will be loss of potential energy due to loss of height and gain of kinetic energy .

loss of height = R - R cos 14 ,    R is radius of hemisphere .

R ( 1 - cos 12 )

= 13 ( 1 - .978 )

h = .286 m

loss of potential energy

= mgh

= m x 9.8 x .286

= 2.8 m

gain of kinetic energy

1/2 m v ² = mgh

v² = 2 g h

v²  = 2 x 9.8 x 2.8

v = 7.40 m /s

4 0
3 years ago
Read 2 more answers
Function of a simple pendulum​
Misha Larkins [42]

Answer:

A pendulum is a mechanical machine that creates a repeating, oscillating motion. A pendulum of fixed length and mass (neglecting loss mechanisms like friction and assuming only small angles of oscillation) has a single, constant frequency. This can be useful for a great many things.

From a historical point of view, pendulums became important for time measurement. Simply counting the oscillations of the pendulum, or attaching the pendulum to a clockwork can help you track time. Making the pendulum in such a way that it holds its shape and dimensions (in changing temperature etc.) and using mechanisms that counteract damping due to friction led to the creation of some of the first very accurate all-weather clocks.

Pendulums were/are also important for musicians, where mechanical metronomes are used to provide a notion of rhythm by clicking at a set frequency.

The Foucault pendulum demonstrated that the Earth is, indeed, spinning around its axis. It is a pendulum that is free to swing in any planar angle. The initial swing impacts an angular momentum in a given angle to the pendulum. Due to the conservation of angular momentum, even though the Earth is spinning underneath the pendulum during the day-night cycle, the pendulum will keep its original plane of oscillation. For us, observers on Earth, it will appear that the plane of oscillation of the pendulum slowly revolves during the day.

Apart from that, in physics a pendulum is one of the most, if not the most important physical system. The reason is this - a mathematical pendulum, when swung under small angles, can be reasonably well approximated by a harmonic oscillator. A harmonic oscillator is a physical system with a returning force present that scales linearly with the displacement. Or, in other words, it is a physical system that exhibits a parabolic potential energy.

A physical system will always try to minimize its potential energy (you can accept this as a definition, or think about it and arrive at the same conclusion). So, in the low-energy world around us, nearly everything is very close to the local minimum of the potential energy. Given any shape of the potential energy ‘landscape’, close to the minima we can use Taylor expansion to approximate the real potential energy by a sum of polynomial functions or powers of the displacement. The 0th power of anything is a constant and due to the free choice of zero point energy it doesn’t affect the physical evolution of the system. The 1st power term is, near the minimum, zero from definition. Imagine a marble in a bowl. It doesn’t matter if the bowl is on the ground or on the table, or even on top of a building (0th term of the Taylor expansion is irrelevant). The 1st order term corresponds to a slanted plane. The bottom of the bowl is symmetric, though. If you could find a slanted plane at the bottom of the bowl that would approximate the shape of the bowl well, then simply moving in the direction of the slanted plane down would lead you even deeper, which would mean that the true bottom of the bowl is in that direction, which is a contradiction since we started at the bottom of the bowl already. In other words, in the vicinity of the minimum we can set the linear, 1st order term to be equal to zero. The next term in the expansion is the 2nd order or harmonic term, a quadratic polynomial. This is the harmonic potential. Every higher term will be smaller than this quadratic term, since we are very close to the minimum and thus the displacement is a small number and taking increasingly higher powers of a small number leads to an even smaller number.

This means that most of the physical phenomena around us can be, reasonable well, described by using the same approach as is needed to describe a pendulum! And if this is not enough, we simply need to look at the next term in the expansion of the potential of a pendulum and use that! That’s why each and every physics students solves dozens of variations of pendulums, oscillators, oscillating circuits, vibrating strings, quantum harmonic oscillators, etc.; and why most of undergraduate physics revolves in one way or another around pendulums.

Explanation:

7 0
3 years ago
The presence of which phenomenon proved the predictability of the big bang theory?
Law Incorporation [45]
The measurement of the expansion of the universe was what gave rise to the big bang theory and it's predictions. 
7 0
3 years ago
Read 2 more answers
Which best explains why a wood-burning fireplace does not represent a closed system? A. because a fire requires oxygen from the
sweet [91]
Answer is A of course lol Fire needs oxygen as an essential fuel to burn.
7 0
3 years ago
Other questions:
  • Kinetic Energy RE-
    11·1 answer
  • A bimetallic strip consists of two metals: A on top and B at bottom. At temperature 00C this bimetallic strip was rigidly attach
    15·1 answer
  • If the IMA of a machine is 3 and the effort force is 6 newtons, then the resistance force is _____.
    11·2 answers
  • Determine the centripetal force on a vehicle rounding a circular curve with a radius of 80 m at a constant speed of 90 km/h if t
    12·1 answer
  • Blocks A (mass 3.00 kg ) and B (mass 14.00 kg , to the right of A) move on a frictionless, horizontal surface. Initially, block
    8·1 answer
  • I will give you branilest
    15·1 answer
  • A passenger jet flies from one airport to another 1293 miles away in 2.1hours . Find average speed
    11·1 answer
  • What physical property makes the red light different from blue light, or radio waves different from microwaves?​
    12·2 answers
  • 1. A group of students were trying to find the greatest
    5·1 answer
  • Betty is sitting on of her surfboard out in the ocean. She is waiting for the perfect wave to come along so she can ride in it t
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!