Answer:
m∠U = 54°
m∠T = 72°
Step-by-step explanation:
The triangle shown is an isosceles triangle. Therefore, the 2 sides and angles that are marked must be congruent:
m∠S = m∠U
m∠S = 54°
m∠U = 54°
All angles in a triangle add up to 180°:
m∠S + m∠U + m∠T = 180°
54° + 54° + m∠T = 180°
108° + m∠T = 180°
m∠T = 72°
Answer:
$31.95
Step-by-step explanation:
The total cost is the initial fee plus the cost of the boxes.
12 + 5×3.99 = 31.95
C is the answer you are looking for.
Answer:
About the x axis
![V = 4\pi[ \frac{x^5}{5}] \Big|_0^2 =4\pi *\frac{32}{5}= \frac{128 \pi}{5}](https://tex.z-dn.net/?f=%20V%20%3D%204%5Cpi%5B%20%5Cfrac%7Bx%5E5%7D%7B5%7D%5D%20%5CBig%7C_0%5E2%20%3D4%5Cpi%20%2A%5Cfrac%7B32%7D%7B5%7D%3D%20%5Cfrac%7B128%20%5Cpi%7D%7B5%7D)
About the y axis
![V = \pi [4y -y^2 +\frac{y^3}{12}] \Big|_0^8 =\pi *\frac{32}{3}= \frac{32 \pi}{3}](https://tex.z-dn.net/?f=%20V%20%3D%20%5Cpi%20%5B4y%20-y%5E2%20%2B%5Cfrac%7By%5E3%7D%7B12%7D%5D%20%5CBig%7C_0%5E8%20%3D%5Cpi%20%2A%5Cfrac%7B32%7D%7B3%7D%3D%20%5Cfrac%7B32%20%5Cpi%7D%7B3%7D)
About the line y=8
![V = \pi [64x -\frac{32}{3}x^3 +\frac{4}{5}x^5] \Big|_0^2 =\pi *(128-\frac{256}{3} +\frac{128}{5})= \frac{1024 \pi}{5}](https://tex.z-dn.net/?f=%20V%20%3D%20%5Cpi%20%5B64x%20-%5Cfrac%7B32%7D%7B3%7Dx%5E3%20%2B%5Cfrac%7B4%7D%7B5%7Dx%5E5%5D%20%5CBig%7C_0%5E2%20%3D%5Cpi%20%2A%28128-%5Cfrac%7B256%7D%7B3%7D%20%2B%5Cfrac%7B128%7D%7B5%7D%29%3D%20%5Cfrac%7B1024%20%5Cpi%7D%7B5%7D)
About the line x=2
![V = \frac{\pi}{2} [\frac{y^2}{2}] \Big|_0^8 =\frac{\pi}{4} *(64)= 16\pi](https://tex.z-dn.net/?f=%20V%20%3D%20%5Cfrac%7B%5Cpi%7D%7B2%7D%20%5B%5Cfrac%7By%5E2%7D%7B2%7D%5D%20%5CBig%7C_0%5E8%20%3D%5Cfrac%7B%5Cpi%7D%7B4%7D%20%2A%2864%29%3D%2016%5Cpi)
Step-by-step explanation:
For this case we have the following functions:

About the x axis
Our zone of interest is on the figure attached, we see that the limit son x are from 0 to 2 and on y from 0 to 8.
We can find the area like this:

And we can find the volume with this formula:


![V = 4\pi [\frac{x^5}{5}] \Big|_0^2 =4\pi *\frac{32}{5}= \frac{128 \pi}{5}](https://tex.z-dn.net/?f=%20V%20%3D%204%5Cpi%20%5B%5Cfrac%7Bx%5E5%7D%7B5%7D%5D%20%5CBig%7C_0%5E2%20%3D4%5Cpi%20%2A%5Cfrac%7B32%7D%7B5%7D%3D%20%5Cfrac%7B128%20%5Cpi%7D%7B5%7D)
About the y axis
For this case we need to find the function in terms of x like this:

but on this case we are just interested on the + part
as we can see on the second figure attached.
We can find the area like this:

And we can find the volume with this formula:


![V = \pi [4y -y^2 +\frac{y^3}{12}] \Big|_0^8 =\pi *\frac{32}{3}= \frac{32 \pi}{3}](https://tex.z-dn.net/?f=%20V%20%3D%20%5Cpi%20%5B4y%20-y%5E2%20%2B%5Cfrac%7By%5E3%7D%7B12%7D%5D%20%5CBig%7C_0%5E8%20%3D%5Cpi%20%2A%5Cfrac%7B32%7D%7B3%7D%3D%20%5Cfrac%7B32%20%5Cpi%7D%7B3%7D)
About the line y=8
The figure 3 attached show the radius. We can find the area like this:

And we can find the volume with this formula:


![V = \pi [64x -\frac{32}{3}x^3 +\frac{4}{5}x^5] \Big|_0^2 =\pi *(128-\frac{256}{3} +\frac{128}{5})= \frac{1024 \pi}{5}](https://tex.z-dn.net/?f=%20V%20%3D%20%5Cpi%20%5B64x%20-%5Cfrac%7B32%7D%7B3%7Dx%5E3%20%2B%5Cfrac%7B4%7D%7B5%7Dx%5E5%5D%20%5CBig%7C_0%5E2%20%3D%5Cpi%20%2A%28128-%5Cfrac%7B256%7D%7B3%7D%20%2B%5Cfrac%7B128%7D%7B5%7D%29%3D%20%5Cfrac%7B1024%20%5Cpi%7D%7B5%7D)
About the line x=2
The figure 4 attached show the radius. We can find the area like this:

And we can find the volume with this formula:


![V = \frac{\pi}{2} [\frac{y^2}{2}] \Big|_0^8 =\frac{\pi}{4} *(64)= 16\pi](https://tex.z-dn.net/?f=%20V%20%3D%20%5Cfrac%7B%5Cpi%7D%7B2%7D%20%5B%5Cfrac%7By%5E2%7D%7B2%7D%5D%20%5CBig%7C_0%5E8%20%3D%5Cfrac%7B%5Cpi%7D%7B4%7D%20%2A%2864%29%3D%2016%5Cpi)
Answer:
8 cm
Step-by-step explanation:
(See the image attached for details)
- The blue segment measures 15 cm
- The green segment measures 7 cm
- The green and yellow segment when added form the blue segment
- So: ? + 7 = 15
Solve:
? + 7 = 15
Subtract 7 on both sides:
? + 7 = 15
-7 -7
? = 8 cm
Therefore, the yellow segment, or the missing side length, measures 8 cm.